54.3.45 problem 1050

Internal problem ID [12340]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1050
Date solved : Wednesday, October 01, 2025 at 01:43:28 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(4*x^2-2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x^{2}} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 18
ode=(-2 + 4*x^2)*y[x] - 4*x*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{x^2} (c_2 x+c_1) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x*Derivative(y(x), x) + (4*x**2 - 2)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False