| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 2 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = 4 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 8 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x}+15 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 i^{\prime \prime }+i = t^{2}+2 \cos \left (4 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 5 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime }-3 s^{\prime }+2 s = 8 t^{2}+12 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 6 \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} L q^{\prime \prime }+R q^{\prime }+\frac {q}{c} = E_{0} \sin \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 4 \sin \left (3 x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \left \{\begin {array}{cc} x & 0\le x \le \pi \\ 0 & \pi <x \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = 2 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x^{2}+\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x^{2}+3 x +{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 8 \cos \left (2 x \right )-4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime }+9 i = 12 \cos \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime }+s^{\prime } = t +{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\omega ^{2} y = A \cos \left (\lambda x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \sin \left (x \right )^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x \,{\mathrm e}^{-x}+3 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = \sin \left (2 x \right ) x +x^{3} {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-y = x^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = {\mathrm e}^{-x} \cos \left (x \right )+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 3 \,{\mathrm e}^{x}+2 \,{\mathrm e}^{-x}+x^{3} {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = x^{2}+3 x \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = \sin \left (3 x \right )+x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} q^{\prime \prime }+q = t \sin \left (t \right )+\cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\omega ^{2} y = t \left (\sin \left (\omega t \right )+\cos \left (\omega t \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \left (\cos \left (2 x \right )+1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \cos \left (x \right ) \cos \left (2 x \right ) \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x^{2} \cos \left (5 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \csc \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 x}+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = x^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}-{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = 2 x^{4}-3 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 4 x^{3}-2 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 x} \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = {\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = 2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x^{2} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{2}+16 \ln \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+y = 16 \sin \left (\ln \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} i^{\prime \prime }+2 i^{\prime } t +i = t \ln \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \frac {\frac {4 x}{25}-\frac {4 y}{25}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = \sqrt {x}+\frac {1}{\sqrt {x}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime } = 5 \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = x^{2}-4 x +2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x +3\right )^{2} y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }-2 y = 24 x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +2\right )^{2} y^{\prime \prime }-y = 4
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (r^{2}+r \right ) R^{\prime \prime }+r R^{\prime }-n \left (n +1\right ) R = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 x -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }+\left (3 \sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }+2 \sin \left (x \right )^{3} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime }+2 i^{\prime }+5 i = 34 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-6 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = x \left (\cos \left (x \right )+1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime \prime }-2 r = -{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 24+24 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-4 y^{\prime }+y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\left (\sin \left (x \right )+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+3\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2} \left (2+x y^{\prime }-4 y^{2} y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} Q^{\prime \prime }+k Q = e \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = f \left (x \right )
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{\prime \prime }+y = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|