Internal
problem
ID
[22809]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
4.
Linear
differential
equations.
A
Exercises
at
page
194
Problem
number
:
2
(b)
Date
solved
:
Thursday, October 02, 2025 at 09:14:49 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(s(t),t),t)-3*diff(s(t),t)+2*s(t) = 8*t^2+12*exp(-t); ic:=[s(0) = 0, D(s)(0) = 2]; dsolve([ode,op(ic)],s(t), singsol=all);
ode=D[s[t],{t,2}]-3*D[s[t],t]+2*s[t]==8*t^2+12*Exp[-t]; ic={s[0]==0,Derivative[1][s][0] ==0}; DSolve[{ode,ic},s[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") s = Function("s") ode = Eq(-8*t**2 + 2*s(t) - 4*Derivative(s(t), t) + Derivative(s(t), (t, 2)) - 12*exp(-t),0) ics = {s(0): 0, Subs(Derivative(s(t), t), t, 0): 0} dsolve(ode,func=s(t),ics=ics)