| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 3 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = \left (x^{2}-1\right ) {\mathrm e}^{2 x}+\left (3 x +4\right ) {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+8 y = \left (10 x^{2}+21 x +9\right ) \sin \left (3 x \right )+x \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 2 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = 2 x -40 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 2 \,{\mathrm e}^{x}-10 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = x^{2}+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \sec \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \csc \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y = f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }-\frac {4 y}{x} = x^{3}+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 6 \left (x^{2}+1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{3} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-3 x +1\right ) y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }+\left (2 x -3\right ) y = x \left (x^{2}-3 x +1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-\frac {\left (1-2 x \right ) y^{\prime }}{1-x}+\frac {\left (x^{2}-3 x +1\right ) y}{1-x} = \left (1-x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-y^{\prime } = 3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x} = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+k^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 s y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+5 y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = 2 x +{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 16 x^{3} {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x}+7 x -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = x^{2}-x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \left (1+x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-12 y = x^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} u^{\prime \prime }-3 u^{\prime } x +13 u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right )^{2} y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }-14 y = x^{3}-3 x^{2}+3 x -8
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+\left (1-\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} u^{\prime \prime }-3 u^{\prime } x +13 u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )^{2} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-k^{2} \cos \left (x \right )^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \cos \left (x \right ) y^{\prime \prime }+\left (x \sin \left (x \right )-2 \cos \left (x \right )\right ) \left (x y^{\prime }-y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-\frac {1}{x}\right ) u^{\prime \prime }+\left (\frac {2}{x}-\frac {2}{x^{2}}-\frac {1}{x^{3}}\right ) u^{\prime }-\frac {u}{x^{4}} = \frac {2}{x}-\frac {2}{x^{2}}-\frac {2}{x^{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +2\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {{y^{\prime \prime }}^{2}}{{y^{\prime }}^{2}}+\frac {y y^{\prime \prime }}{y^{\prime }}-y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 b y^{\prime }+y = k
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m y^{\prime \prime }+a y^{\prime }+k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\omega ^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \theta ^{\prime \prime }+4 \theta = 15 \cos \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+8 y = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & t <1 \\ 2 & 1\le t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & t <6 \\ 1 & 6\le t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 4 t & 0\le t \le 1 \\ 4 & 1<t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2} x^{2} \left (x^{2}-1\right )-1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-{y^{\prime }}^{3}-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{\prime \prime }+{y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\frac {2 {y^{\prime }}^{2}}{y}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = 4 x^{3}-4 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+\sin \left (x\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x^{2}-4 x+\lambda
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 6 y+5 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-12 y^{\prime }+35 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 y^{\prime \prime }-30 y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }-4 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 2 \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime } = 6 x^{5} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = x \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|