82.8.34 problem 36-34

Internal problem ID [21905]
Book : The Differential Equations Problem Solver. VOL. II. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 36. Nonlinear differential equations. Page 1203
Problem number : 36-34
Date solved : Thursday, October 02, 2025 at 08:06:46 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} x^{\prime \prime }&=x^{2}-4 x+\lambda \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 73
ode:=diff(diff(x(t),t),t) = x(t)^2-4*x(t)+lambda; 
dsolve(ode,x(t), singsol=all);
 
\begin{align*} -3 \int _{}^{x}\frac {1}{\sqrt {6 \textit {\_a}^{3}-36 \textit {\_a}^{2}+18 \textit {\_a} \lambda +9 c_1}}d \textit {\_a} -t -c_2 &= 0 \\ 3 \int _{}^{x}\frac {1}{\sqrt {6 \textit {\_a}^{3}-36 \textit {\_a}^{2}+18 \textit {\_a} \lambda +9 c_1}}d \textit {\_a} -t -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.162 (sec). Leaf size: 384
ode=D[x[t],{t,2}]==x[t]^2-4*x[t]+\[Lambda]; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {4 \left (-x(t)+\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \text {$\#$1} \lambda +3 c_1\&,1\right ]\right ) \left (-x(t)+\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \text {$\#$1} \lambda +3 c_1\&,2\right ]\right ) \left (x(t)-\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \text {$\#$1} \lambda +3 c_1\&,3\right ]\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \lambda \text {$\#$1}+3 c_1\&,3\right ]-x(t)}{\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \lambda \text {$\#$1}+3 c_1\&,3\right ]-\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \lambda \text {$\#$1}+3 c_1\&,2\right ]}}\right ),\frac {\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \lambda \text {$\#$1}+3 c_1\&,2\right ]-\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \lambda \text {$\#$1}+3 c_1\&,3\right ]}{\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \lambda \text {$\#$1}+3 c_1\&,1\right ]-\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \lambda \text {$\#$1}+3 c_1\&,3\right ]}\right ){}^2}{\left (2 \lambda x(t)+\frac {2 x(t)^3}{3}-4 x(t)^2+c_1\right ) \left (\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \text {$\#$1} \lambda +3 c_1\&,1\right ]-\text {Root}\left [2 \text {$\#$1}^3-12 \text {$\#$1}^2+6 \text {$\#$1} \lambda +3 c_1\&,3\right ]\right )}=(t+c_2){}^2,x(t)\right ] \]
Sympy
from sympy import * 
t = symbols("t") 
lambda_ = symbols("lambda_") 
x = Function("x") 
ode = Eq(-lambda_ - x(t)**2 + 4*x(t) + Derivative(x(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
Timed Out