4.3.65 Problems 6401 to 6500

Table 4.493: Second order ode

#

ODE

Mathematica

Maple

Sympy

18361

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \]

18362

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \]

18363

\[ {} y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

18364

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \]

18365

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right ) \]

18366

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \]

18367

\[ {} y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

18368

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

18369

\[ {} y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

18371

\[ {} y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

18376

\[ {} y^{\prime \prime }+y = 2-2 x \]

18377

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]

18378

\[ {} y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]

18379

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

18380

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x} \]

18381

\[ {} y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

18382

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right ) \]

18383

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

18384

\[ {} y^{\prime \prime }+4 y = \sin \left (x \right ) \]

18385

\[ {} y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

18386

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 2 x^{2} {\mathrm e}^{x} \]

18387

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6 \]

18388

\[ {} y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

18389

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]

18394

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

18395

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

18396

\[ {} y^{\prime \prime }-y = 1 \]

18397

\[ {} y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

18398

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

18399

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

18400

\[ {} y^{\prime \prime }-y^{\prime }-5 y = 1 \]

18401

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

18402

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

18403

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

18404

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18405

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

18406

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

18407

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

18408

\[ {} \left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

18409

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

18414

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = x \left (6-\ln \left (x \right )\right ) \]

18415

\[ {} x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

18416

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

18417

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = x^{2}-2 x +2 \]

18418

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

18419

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 \ln \left (x \right )^{2}+12 x \]

18420

\[ {} \left (1+x \right )^{3} y^{\prime \prime }+3 \left (1+x \right )^{2} y^{\prime }+\left (1+x \right ) y = 6 \ln \left (1+x \right ) \]

18421

\[ {} \left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

18422

\[ {} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

18423

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

18424

\[ {} \left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 y^{\prime } \left (1+x \right )+6 y = 6 \]

18425

\[ {} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

18426

\[ {} y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

18427

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

18428

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = 1 \]

18429

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 5 x^{4} \]

18430

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

18431

\[ {} y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{-2 x} = {\mathrm e}^{-3 x} \]

18432

\[ {} \left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (x -1\right )^{2}}{x} \]

18433

\[ {} y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x} = x \,{\mathrm e}^{2 x}-1 \]

18434

\[ {} x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right ) \]

18435

\[ {} y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

18436

\[ {} y^{\prime \prime }+y^{\prime } = \frac {1}{{\mathrm e}^{x}+1} \]

18437

\[ {} y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

18438

\[ {} y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

18439

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

18440

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

18441

\[ {} y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

18442

\[ {} y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

18444

\[ {} x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

18445

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

18446

\[ {} x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

18447

\[ {} x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

18448

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

18449

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = 1 \]

18450

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {x +6}{x^{2}} \]

18451

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {1}{x^{2}+1} \]

18452

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (x -1\right )^{2} {\mathrm e}^{x} \]

18453

\[ {} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]

18454

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]

18455

\[ {} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right ) \]

18456

\[ {} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = -2+2 x \]

18457

\[ {} x^{\prime \prime }+x^{\prime }+x = 0 \]

18458

\[ {} x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

18459

\[ {} x^{\prime \prime }+2 x^{\prime }+x = 0 \]

18460

\[ {} x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

18461

\[ {} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

18462

\[ {} x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

18463

\[ {} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

18464

\[ {} x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

18465

\[ {} x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

18466

\[ {} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

18467

\[ {} y^{\prime \prime }+\lambda y = 0 \]

18468

\[ {} y^{\prime \prime }+\lambda y = 0 \]

18469

\[ {} y^{\prime \prime }-y = 0 \]

18470

\[ {} y^{\prime \prime }+y = 0 \]

18471

\[ {} 1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

18472

\[ {} y^{\prime \prime }+y = 0 \]

18473

\[ {} y^{\prime \prime }-y = 0 \]

18474

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]