4.3.38 Problems 3701 to 3800

Table 4.439: Second order ode

#

ODE

Mathematica

Maple

Sympy

11089

\[ {} \left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

11090

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

11091

\[ {} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

11092

\[ {} y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

11093

\[ {} 2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

11094

\[ {} 2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y = 0 \]

11095

\[ {} 2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0 \]

11096

\[ {} 2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

11097

\[ {} t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

11098

\[ {} t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

11099

\[ {} t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0 \]

11100

\[ {} t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

11101

\[ {} t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

11102

\[ {} t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

11103

\[ {} t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

11104

\[ {} t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0 \]

11105

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]

11106

\[ {} \left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+y = 0 \]

11107

\[ {} 4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

11108

\[ {} f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

11109

\[ {} z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

11110

\[ {} z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

11111

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

11112

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

11113

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

11114

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

11115

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 0 \]

11116

\[ {} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

11117

\[ {} y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

11118

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

11119

\[ {} \left (-4 x^{2}+1\right ) y^{\prime \prime }-20 x y^{\prime }-16 y = 0 \]

11120

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

11121

\[ {} y^{\prime \prime }+x y^{\prime }+\left (x +2\right ) y = 0 \]

11122

\[ {} \left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0 \]

11123

\[ {} 4 y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

11124

\[ {} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

11125

\[ {} 4 x y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

11126

\[ {} 6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

11127

\[ {} 3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

11128

\[ {} 2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

11129

\[ {} 4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

11130

\[ {} x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

11131

\[ {} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

11132

\[ {} x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

11133

\[ {} x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

11134

\[ {} x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

11135

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

11136

\[ {} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

11137

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

11138

\[ {} x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

11139

\[ {} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

11140

\[ {} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

11141

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

11142

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (2+3 x \right ) y = 0 \]

11143

\[ {} x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

11144

\[ {} 4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

11145

\[ {} x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (1+x \right ) y = 0 \]

11146

\[ {} x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

11147

\[ {} 4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

11148

\[ {} x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

11149

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

11150

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

11151

\[ {} 2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

11152

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

11153

\[ {} x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

11154

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

11155

\[ {} x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

11156

\[ {} \left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

11157

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

11158

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

11159

\[ {} x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (-\frac {1}{4} x -x^{2}\right ) y^{\prime }-\frac {5 x y}{16} = 0 \]

11160

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

11161

\[ {} x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

11162

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

11163

\[ {} 2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0 \]

11164

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

11165

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+x y^{\prime }-y = 0 \]

11166

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

11167

\[ {} \left (1-x \right ) x y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

11168

\[ {} 4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

11169

\[ {} u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

11170

\[ {} u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

11171

\[ {} u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

11172

\[ {} u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

11173

\[ {} u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

11174

\[ {} -a^{2} y+y^{\prime \prime } = \frac {6 y}{x^{2}} \]

11175

\[ {} y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

11176

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

11177

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

11178

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

11179

\[ {} y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

11180

\[ {} x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

11181

\[ {} \left (2-x \right ) x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

11182

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

11183

\[ {} x y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+\left (x +2\right ) y = 0 \]

11184

\[ {} 3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

11185

\[ {} x \left (1+x \right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

11186

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0 \]

11187

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0 \]

11188

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]