Internal
problem
ID
[11177]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
722
Date
solved
:
Tuesday, September 30, 2025 at 07:36:39 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+1/4*(-9*a^2+4*x^2)/a^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(4*x^2-9*a^2)/(4*a^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (-9*a**2 + 4*x**2)*y(x)/(4*a**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)