4.3.21 Problems 2001 to 2100

Table 4.405: Second order ode

#

ODE

Mathematica

Maple

Sympy

6597

\[ {} 2 \left (x -y^{\prime }\right ) y^{\prime }-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2} = 2 y \]

6598

\[ {} 4 {y^{\prime }}^{2}-2 \left (3 x y^{\prime }+y\right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2} = 0 \]

6599

\[ {} 6 y y^{\prime \prime }-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+\left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2} = 36 x {y^{\prime }}^{2} \]

6600

\[ {} h y^{2}+\operatorname {g1} y y^{\prime }+\operatorname {g0} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }+\operatorname {f0} {y^{\prime \prime }}^{2} = 0 \]

6601

\[ {} -{y^{\prime }}^{2}+4 {y^{\prime }}^{3} y+y y^{\prime \prime } = 0 \]

6602

\[ {} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

6603

\[ {} {y^{\prime }}^{2} \left (1-b^{2} {y^{\prime }}^{2}\right )+2 b^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2}-b^{2} y^{2}\right ) {y^{\prime \prime }}^{2} = 0 \]

6604

\[ {} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2} = 4 x y \left (x y^{\prime }-y\right )^{3} \]

6605

\[ {} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

6606

\[ {} 32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}+\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3} = 0 \]

6607

\[ {} f \left (y^{\prime \prime }\right )+x y^{\prime \prime } = y^{\prime } \]

6608

\[ {} f \left (\frac {y^{\prime \prime }}{y^{\prime }}\right ) y^{\prime } = {y^{\prime }}^{2}-y y^{\prime \prime } \]

6609

\[ {} f \left (y^{\prime \prime }, y^{\prime }-x y^{\prime \prime }, y-x y^{\prime }+\frac {x^{2} y^{\prime \prime }}{2}\right ) = 0 \]

6812

\[ {} y^{\prime } y^{\prime \prime } = a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2} \]

7051

\[ {} y^{\prime \prime }+2 y^{\prime } = 0 \]

7052

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

7053

\[ {} y^{\prime \prime }-y = 0 \]

7054

\[ {} 6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

7055

\[ {} y^{\prime \prime }+2 y^{\prime }-y = 0 \]

7060

\[ {} y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

7061

\[ {} y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

7063

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

7066

\[ {} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

7072

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

7073

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

7075

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

7080

\[ {} y^{\prime \prime } = 0 \]

7081

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

7082

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

7083

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

7085

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

7086

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

7087

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

7088

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

7089

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]

7090

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \]

7091

\[ {} y^{\prime \prime }+y^{\prime }+y = x^{2} \]

7092

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \]

7093

\[ {} y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

7094

\[ {} y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

7095

\[ {} y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

7096

\[ {} y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

7097

\[ {} y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

7098

\[ {} y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

7099

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2} \]

7100

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

7101

\[ {} y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x} \]

7102

\[ {} y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x} \]

7103

\[ {} y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

7104

\[ {} y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right ) \]

7105

\[ {} y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]

7106

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right ) \]

7107

\[ {} y^{\prime \prime }+9 y = 8 \cos \left (x \right ) \]

7108

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right ) \]

7109

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]

7110

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

7111

\[ {} y^{\prime \prime }+y = \cot \left (x \right ) \]

7112

\[ {} y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

7113

\[ {} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

7114

\[ {} y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

7115

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

7116

\[ {} y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

7117

\[ {} y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

7118

\[ {} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

7119

\[ {} y^{\prime \prime }+y = \csc \left (x \right ) \]

7120

\[ {} y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

7121

\[ {} y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x} \]

7122

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

7123

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right ) \]

7124

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right ) \]

7125

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

7126

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

7127

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3} \]

7128

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x} \]

7129

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x} \]

7130

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

7131

\[ {} y^{3} y^{\prime \prime } = k \]

7132

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

7133

\[ {} x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

7134

\[ {} x y^{\prime \prime }-y^{\prime } = x^{2} \]

7135

\[ {} \left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

7136

\[ {} r^{\prime \prime } = -\frac {k}{r^{2}} \]

7137

\[ {} y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

7138

\[ {} y^{\prime \prime } = 2 k y^{3} \]

7139

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

7140

\[ {} r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

7141

\[ {} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

7142

\[ {} y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

7143

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

7144

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (1+y^{\prime }\right ) x = 0 \]

7145

\[ {} \left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

7146

\[ {} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]

7147

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

7148

\[ {} 2 y^{\prime \prime } = {\mathrm e}^{y} \]

7149

\[ {} x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

7150

\[ {} x y^{\prime \prime }-y^{\prime } = x^{2} \]

7151

\[ {} y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

7152

\[ {} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

7153

\[ {} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

7161

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]