23.4.299 problem 302

Internal problem ID [6601]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 302
Date solved : Tuesday, September 30, 2025 at 03:27:23 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

\begin{align*} -{y^{\prime }}^{2}+4 y {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 41
ode:=-diff(y(x),x)^2+4*y(x)*diff(y(x),x)^3+y(x)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= c_1 \\ y &= {\mathrm e}^{\frac {-\frac {c_1 \operatorname {LambertW}\left (\frac {2 \,{\mathrm e}^{\frac {2 c_2 +2 x}{c_1}}}{c_1}\right )}{2}+c_2 +x}{c_1}} \\ \end{align*}
Mathematica. Time used: 56.397 (sec). Leaf size: 90
ode=-D[y[x],x]^2 + 4*y[x]*D[y[x],x]^3 + y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sqrt {c_1} \sqrt {W\left (\frac {2 e^{\frac {2 (x+c_2)}{c_1}}}{c_1}\right )}}{\sqrt {2}}\\ y(x)&\to \frac {\sqrt {c_1} \sqrt {W\left (\frac {2 e^{\frac {2 (x+c_2)}{c_1}}}{c_1}\right )}}{\sqrt {2}}\\ y(x)&\to -1\\ y(x)&\to 1 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x)*Derivative(y(x), x)**3 + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE (sqrt((27*Derivative(y(x), (x, 2))/4 - 1/(32*y(x)**3))**2 - 1/(1