6.13.48 problem 47

Internal problem ID [1939]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number : 47
Date solved : Tuesday, September 30, 2025 at 05:21:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+2 x +1\right ) y^{\prime \prime }+\left (1-x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \\ y^{\prime }\left (0\right )&=-1 \\ \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 20
Order:=6; 
ode:=(x^2+2*x+1)*diff(diff(y(x),x),x)+(1-x)*y(x) = 0; 
ic:=[y(0) = 2, D(y)(0) = -1]; 
dsolve([ode,op(ic)],y(x),type='series',x=0);
 
\[ y = 2-x -x^{2}+\frac {7}{6} x^{3}-x^{4}+\frac {89}{120} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 32
ode=(1+2*x+x^2)*D[y[x],{x,2}]+(1-x)*y[x]==0; 
ic={y[0]==2,Derivative[1][y][0] ==-1}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {89 x^5}{120}-x^4+\frac {7 x^3}{6}-x^2-x+2 \]
Sympy. Time used: 0.303 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - x)*y(x) + (x**2 + 2*x + 1)*Derivative(y(x), (x, 2)),0) 
ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): -1} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {3 x^{4}}{8} + \frac {x^{3}}{2} - \frac {x^{2}}{2} + 1\right ) + C_{1} x \left (\frac {x^{3}}{4} - \frac {x^{2}}{6} + 1\right ) + O\left (x^{6}\right ) \]