Internal
problem
ID
[1938]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.3
SERIES
SOLUTIONS
NEAR
AN
ORDINARY
POINT
II.
Exercises
7.3.
Page
338
Problem
number
:
46
Date
solved
:
Tuesday, September 30, 2025 at 05:21:30 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(x^2+4*x+3)*diff(diff(y(x),x),x)-(-x^2+4*x+5)*diff(y(x),x)-(x+2)*y(x) = 0; ic:=[y(-2) = 2, D(y)(-2) = -1]; dsolve([ode,op(ic)],y(x),type='series',x=-2);
ode=(3+4*x+x^2)*D[y[x],{x,2}]-(5+4*x-x^2)*D[y[x],x]-(2+x)*y[x]==0; ic={y[-2]==2,Derivative[1][y][-2]==-1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-2,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x - 2)*y(x) - (-x**2 + 4*x + 5)*Derivative(y(x), x) + (x**2 + 4*x + 3)*Derivative(y(x), (x, 2)),0) ics = {y(-2): 2, Subs(Derivative(y(x), x), x, -2): -1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-2,n=6)