Internal
problem
ID
[24269]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
27
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 10:02:50 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=2*x^2+x*y(x)-2*y(x)^2-(x^2-4*x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^2+x*y[x]-2*y[x]^2)-(x^2-4*x*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2 + x*y(x) - (x**2 - 4*x*y(x))*Derivative(y(x), x) - 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)