89.2.4 problem 4

Internal problem ID [24269]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 2. Equations of the first order and first degree. Exercises at page 27
Problem number : 4
Date solved : Thursday, October 02, 2025 at 10:02:50 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} 2 x^{2}+y x -2 y^{2}-\left (x^{2}-4 y x \right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 26
ode:=2*x^2+x*y(x)-2*y(x)^2-(x^2-4*x*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (\operatorname {RootOf}\left (2 \ln \left (\sec \left (\textit {\_Z} \right )^{2}\right )-\textit {\_Z} +2 \ln \left (x \right )+2 c_1 \right )\right ) x \]
Mathematica. Time used: 0.071 (sec). Leaf size: 34
ode=(2*x^2+x*y[x]-2*y[x]^2)-(x^2-4*x*y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [2 \log \left (\frac {y(x)^2}{x^2}+1\right )-\arctan \left (\frac {y(x)}{x}\right )=-2 \log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 0.751 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2 + x*y(x) - (x**2 - 4*x*y(x))*Derivative(y(x), x) - 2*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (x \right )} = C_{1} - \log {\left (1 + \frac {y^{2}{\left (x \right )}}{x^{2}} \right )} + \frac {\operatorname {atan}{\left (\frac {y{\left (x \right )}}{x} \right )}}{2} \]