89.2.3 problem 3

Internal problem ID [24268]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 2. Equations of the first order and first degree. Exercises at page 27
Problem number : 3
Date solved : Thursday, October 02, 2025 at 10:02:39 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} 2 y^{2}+4 x^{2}-x y y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 30
ode:=4*x^2+2*y(x)^2-x*y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {c_1 \,x^{2}-4}\, x \\ y &= -\sqrt {c_1 \,x^{2}-4}\, x \\ \end{align*}
Mathematica. Time used: 0.365 (sec). Leaf size: 38
ode=2*(2*x^2+y[x]^2)-x*y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x \sqrt {-4+c_1 x^2}\\ y(x)&\to x \sqrt {-4+c_1 x^2} \end{align*}
Sympy. Time used: 0.240 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2 - x*y(x)*Derivative(y(x), x) + 2*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x \sqrt {C_{1} x^{2} - 4}, \ y{\left (x \right )} = x \sqrt {C_{1} x^{2} - 4}\right ] \]