88.15.4 problem 4

Internal problem ID [24100]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 4. Linear equations. Exercises at page 97
Problem number : 4
Date solved : Thursday, October 02, 2025 at 09:59:14 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=diff(diff(y(x),x),x)+diff(y(x),x) = 4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -{\mathrm e}^{-x} c_1 +4 x +c_2 \]
Mathematica. Time used: 0.01 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+D[y[x],x]==4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 4 x-c_1 e^{-x}+c_2 \end{align*}
Sympy. Time used: 0.067 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- x} + 4 x \]