Internal
problem
ID
[24099]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
4.
Linear
equations.
Exercises
at
page
97
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 09:59:13 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)+4*y(x) = 1-x; ic:=[y(0) = 0, D(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+4*y[x]==1-x; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x + 4*y(x) + Derivative(y(x), (x, 2)) - 1,0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)