80.1.16 problem 14 (c)

Internal problem ID [21134]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 1. First order linear differential equations. Excercise 1.5 at page 13
Problem number : 14 (c)
Date solved : Thursday, October 02, 2025 at 07:09:43 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} x^{\prime }+3 x&=-2 t \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=diff(x(t),t)+3*x(t) = -2*t; 
dsolve(ode,x(t), singsol=all);
 
\[ x = -\frac {2 t}{3}+\frac {2}{9}+{\mathrm e}^{-3 t} c_1 \]
Mathematica. Time used: 0.039 (sec). Leaf size: 22
ode=D[x[t],t]+3*x[t]==-2*t; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to -\frac {2 t}{3}+c_1 e^{-3 t}+\frac {2}{9} \end{align*}
Sympy. Time used: 0.073 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(2*t + 3*x(t) + Derivative(x(t), t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} e^{- 3 t} - \frac {2 t}{3} + \frac {2}{9} \]