80.1.15 problem 14 (b)

Internal problem ID [21133]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 1. First order linear differential equations. Excercise 1.5 at page 13
Problem number : 14 (b)
Date solved : Thursday, October 02, 2025 at 07:09:42 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} x^{\prime }-2 x&=3 t \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=diff(x(t),t)-2*x(t) = 3*t; 
dsolve(ode,x(t), singsol=all);
 
\[ x = -\frac {3 t}{2}-\frac {3}{4}+{\mathrm e}^{2 t} c_1 \]
Mathematica. Time used: 0.043 (sec). Leaf size: 22
ode=D[x[t],t]-2*x[t]==3*t; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to -\frac {3 t}{2}+c_1 e^{2 t}-\frac {3}{4} \end{align*}
Sympy. Time used: 0.071 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(-3*t - 2*x(t) + Derivative(x(t), t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} e^{2 t} - \frac {3 t}{2} - \frac {3}{4} \]