Internal
problem
ID
[21086]
Book
:
Ordinary
Differential
Equations.
By
Wolfgang
Walter.
Graduate
texts
in
Mathematics.
Springer.
NY.
QA372.W224
1998
Section
:
Chapter
1.
First
order
equations:
Some
integrable
cases.
Excercises
XIII
at
page
24
Problem
number
:
(e)
Date
solved
:
Thursday, October 02, 2025 at 07:07:04 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x) = y(x)*ln(y(x))/sin(x); ic:=[y(1/2*Pi) = exp(exp(1))]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x]== y[x]*Log[y[x]]/Sin[x]; ic={y[Pi/2]==Exp[Exp[1]]}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x)*log(y(x))/sin(x) + Derivative(y(x), x),0) ics = {y(pi/2): exp(E)} dsolve(ode,func=y(x),ics=ics)