Internal
problem
ID
[21085]
Book
:
Ordinary
Differential
Equations.
By
Wolfgang
Walter.
Graduate
texts
in
Mathematics.
Springer.
NY.
QA372.W224
1998
Section
:
Chapter
1.
First
order
equations:
Some
integrable
cases.
Excercises
XIII
at
page
24
Problem
number
:
(d)
Date
solved
:
Thursday, October 02, 2025 at 07:07:00 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x) = exp(-y(x)^2)/y(x)/(x^2+2*x); ic:=[y(2) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x]== Exp[-y[x]^2]/(y[x]*(2*x+x^2) ); ic={y[2]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - exp(-y(x)**2)/((x**2 + 2*x)*y(x)),0) ics = {y(2): 0} dsolve(ode,func=y(x),ics=ics)