Internal
problem
ID
[20948]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
1,
First
order
ODEs.
Problems
section
1.5
Problem
number
:
12.b
Date
solved
:
Thursday, October 02, 2025 at 06:50:02 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x)*exp(-x)+y(x)^2-2*y(x)*exp(x) = 1-exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]*Exp[-x]+y[x]^2-2*y[x]*Exp[x]==1-Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x)**2 - 2*y(x)*exp(x) + exp(2*x) - 1 + exp(-x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)