Internal
problem
ID
[20947]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
1,
First
order
ODEs.
Problems
section
1.5
Problem
number
:
12.a
Date
solved
:
Thursday, October 02, 2025 at 06:50:00 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Riccati]
ode:=x*diff(y(x),x)-y(x)^2+(2*x+1)*y(x) = x^2+2*x; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-y[x]^2+(2*x+1)*y[x]==x^2+2*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 + x*Derivative(y(x), x) - 2*x + (2*x + 1)*y(x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)