3.1.1 Summary table

Table 3.1: Summary table of CAS showing percentage solved per Maple ode type

ODE type

Count

MMA

Maple

Sympy

[_quadrature]

\(1369\)

95.98

99.56

90.94

[[_2nd_order, _quadrature]]

\(127\)

99.21

98.43

96.06

[[_linear, ‘class A‘]]

\(522\)

99.81

99.43

93.87

[_separable]

\(1902\)

98.05

99.26

92.32

[[_homogeneous, ‘class C‘], _dAlembert]

\(131\)

93.13

98.47

74.81

[_Riccati]

\(343\)

69.68

74.64

4.96

[[_Riccati, _special]]

\(44\)

100.00

100.00

6.82

[[_homogeneous, ‘class G‘]]

\(97\)

93.81

95.88

44.33

[_linear]

\(1079\)

99.44

99.54

93.05

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(52\)

100.00

100.00

100.00

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

\(195\)

100.00

100.00

98.97

[[_homogeneous, ‘class A‘], _dAlembert]

\(207\)

98.07

100.00

62.80

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(158\)

98.73

99.37

77.22

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(98\)

100.00

100.00

78.57

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

\(344\)

95.64

100.00

80.23

[[_homogeneous, ‘class C‘], _Riccati]

\(43\)

100.00

100.00

97.67

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

\(14\)

100.00

100.00

100.00

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

\(130\)

100.00

100.00

97.69

[_Bernoulli]

\(176\)

99.43

100.00

88.64

[[_1st_order, _with_linear_symmetries], _Bernoulli]

\(16\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(52\)

100.00

100.00

40.38

[‘y=_G(x,y”)‘]

\(192\)

60.94

60.94

21.35

[[_1st_order, _with_linear_symmetries]]

\(150\)

91.33

98.67

28.67

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

\(55\)

98.18

100.00

29.09

[_exact, _rational]

\(76\)

94.74

100.00

0.00

[_exact]

\(149\)

93.29

98.66

2.68

[[_1st_order, _with_linear_symmetries], _exact, _rational]

\(10\)

100.00

100.00

0.00

[[_2nd_order, _missing_y]]

\(365\)

96.71

98.63

84.93

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(20\)

100.00

100.00

0.00

[[_2nd_order, _missing_x]]

\(1620\)

96.36

97.16

90.31

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

\(18\)

100.00

100.00

100.00

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

\(6\)

100.00

100.00

83.33

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(22\)

95.45

100.00

0.00

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\(175\)

87.43

94.29

20.57

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(23\)

56.52

100.00

0.00

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(71\)

100.00

98.59

0.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(96\)

98.96

98.96

46.88

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(277\)

98.92

98.92

81.23

[[_1st_order, _with_linear_symmetries], _Clairaut]

\(105\)

100.00

100.00

60.00

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(5\)

100.00

100.00

60.00

[[_homogeneous, ‘class G‘], _exact, _rational]

\(15\)

80.00

100.00

46.67

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(207\)

99.03

99.03

98.07

[[_Emden, _Fowler]]

\(524\)

99.43

97.33

88.93

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

\(18\)

11.11

22.22

0.00

[[_2nd_order, _exact, _linear, _homogeneous]]

\(377\)

99.47

98.67

73.47

[[_3rd_order, _missing_x]]

\(420\)

99.52

100.00

97.86

[[_3rd_order, _with_linear_symmetries]]

\(280\)

94.29

93.93

58.21

[[_2nd_order, _with_linear_symmetries]]

\(4131\)

95.13

95.76

52.97

[_Gegenbauer]

\(133\)

100.00

100.00

42.11

[[_high_order, _missing_x]]

\(426\)

99.77

99.77

99.06

[[_3rd_order, _missing_y]]

\(205\)

98.54

100.00

88.29

[[_3rd_order, _exact, _linear, _homogeneous]]

\(32\)

96.88

96.88

84.38

[[_2nd_order, _linear, _nonhomogeneous]]

\(2047\)

98.39

98.24

82.46

[[_high_order, _linear, _nonhomogeneous]]

\(166\)

98.19

98.80

92.77

[[_high_order, _missing_y]]

\(119\)

99.16

98.32

90.76

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

\(127\)

100.00

100.00

59.06

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(133\)

93.98

97.74

24.06

[_Lienard]

\(95\)

98.95

98.95

84.21

[_Bessel]

\(43\)

100.00

95.35

72.09

[_Jacobi]

\(67\)

97.01

100.00

26.87

[_Laguerre]

\(72\)

100.00

100.00

41.67

system_of_ODEs

\(1865\)

96.35

97.00

90.03

[[_high_order, _with_linear_symmetries]]

\(100\)

87.00

85.00

49.00

[[_homogeneous, ‘class A‘], _rational, _Riccati]

\(39\)

100.00

100.00

89.74

[‘x=_G(y,y”)‘]

\(18\)

61.11

61.11

11.11

[[_Abel, ‘2nd type‘, ‘class B‘]]

\(17\)

35.29

47.06

0.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(19\)

100.00

100.00

10.53

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

\(44\)

97.73

100.00

84.09

[[_homogeneous, ‘class D‘], _rational]

\(4\)

100.00

100.00

0.00

[[_1st_order, _with_exponential_symmetries]]

\(15\)

100.00

100.00

80.00

[_rational]

\(166\)

78.92

71.69

4.22

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(181\)

33.70

53.59

3.87

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(4\)

100.00

100.00

25.00

[NONE]

\(134\)

32.09

28.36

1.49

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

\(41\)

100.00

97.56

82.93

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(93\)

98.92

100.00

76.34

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(35\)

100.00

100.00

48.57

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(64\)

100.00

100.00

26.56

[[_homogeneous, ‘class C‘], _rational, _Riccati]

\(5\)

100.00

100.00

100.00

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(34\)

17.65

38.24

0.00

[_rational, _Bernoulli]

\(72\)

100.00

100.00

95.83

[[_homogeneous, ‘class A‘]]

\(9\)

100.00

100.00

66.67

[[_homogeneous, ‘class G‘], _rational, _Riccati]

\(22\)

100.00

100.00

95.45

[[_1st_order, _with_linear_symmetries], _Riccati]

\(11\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]

\(1\)

100.00

100.00

0.00

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(2\)

100.00

100.00

50.00

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(22\)

100.00

100.00

0.00

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

\(7\)

100.00

100.00

0.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(16\)

100.00

100.00

12.50

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(4\)

100.00

100.00

25.00

[_exact, _Bernoulli]

\(9\)

100.00

100.00

100.00

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

\(20\)

100.00

100.00

100.00

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(12\)

83.33

83.33

8.33

[[_homogeneous, ‘class G‘], _rational]

\(169\)

98.22

99.41

55.62

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(2\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(14\)

100.00

100.00

71.43

[_rational, _Riccati]

\(108\)

95.37

97.22

12.96

[[_3rd_order, _linear, _nonhomogeneous]]

\(181\)

96.69

96.69

88.40

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

\(18\)

100.00

100.00

83.33

[[_high_order, _exact, _linear, _nonhomogeneous]]

\(11\)

90.91

81.82

81.82

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(54\)

100.00

100.00

88.89

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

\(3\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

\(3\)

100.00

100.00

100.00

[_Abel]

\(45\)

68.89

66.67

4.44

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(6\)

100.00

100.00

83.33

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

\(7\)

57.14

100.00

0.00

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

\(7\)

100.00

100.00

100.00

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(6\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(10\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

\(17\)

100.00

100.00

94.12

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(7\)

100.00

100.00

57.14

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

\(50\)

100.00

100.00

100.00

[[_homogeneous, ‘class D‘], _Bernoulli]

\(8\)

100.00

100.00

100.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

\(11\)

100.00

100.00

81.82

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

\(7\)

100.00

100.00

71.43

[[_high_order, _quadrature]]

\(36\)

100.00

100.00

100.00

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\(54\)

100.00

100.00

33.33

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

\(54\)

98.15

94.44

83.33

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(8\)

87.50

100.00

0.00

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

\(18\)

100.00

100.00

61.11

[_dAlembert]

\(39\)

100.00

97.44

0.00

[[_1st_order, _with_linear_symmetries], _dAlembert]

\(89\)

83.15

100.00

19.10

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

\(16\)

100.00

100.00

18.75

[[_homogeneous, ‘class G‘], _Clairaut]

\(4\)

100.00

100.00

100.00

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

\(40\)

97.50

100.00

2.50

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(3\)

100.00

100.00

66.67

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(29\)

100.00

100.00

0.00

[[_3rd_order, _exact, _nonlinear]]

\(5\)

20.00

40.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(9\)

100.00

100.00

100.00

[[_3rd_order, _quadrature]]

\(35\)

100.00

100.00

100.00

[[_homogeneous, ‘class G‘], _exact]

\(4\)

100.00

100.00

100.00

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

\(14\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(2\)

100.00

100.00

0.00

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

\(1\)

100.00

100.00

100.00

[_erf]

\(6\)

100.00

100.00

33.33

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(4\)

100.00

100.00

25.00

[[_homogeneous, ‘class D‘]]

\(15\)

100.00

100.00

6.67

[_exact, _rational, _Riccati]

\(5\)

100.00

100.00

100.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(14\)

100.00

100.00

42.86

[[_1st_order, _with_linear_symmetries], _rational]

\(40\)

100.00

100.00

40.00

[[_homogeneous, ‘class D‘], _rational, _Riccati]

\(28\)

100.00

100.00

75.00

[[_1st_order, _with_linear_symmetries], _exact]

\(5\)

100.00

100.00

60.00

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

\(7\)

100.00

100.00

100.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(4\)

100.00

100.00

100.00

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(5\)

100.00

100.00

60.00

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(46\)

34.78

50.00

6.52

[[_homogeneous, ‘class G‘], _dAlembert]

\(6\)

100.00

100.00

83.33

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

\(7\)

100.00

100.00

100.00

[[_homogeneous, ‘class C‘], _rational]

\(12\)

100.00

100.00

8.33

[[_1st_order, _with_linear_symmetries], _Chini]

\(5\)

80.00

100.00

0.00

[[_homogeneous, ‘class G‘], _Abel]

\(6\)

100.00

100.00

66.67

[[_homogeneous, ‘class G‘], _Chini]

\(4\)

100.00

100.00

0.00

[_Chini]

\(5\)

0.00

0.00

0.00

[_rational, [_Riccati, _special]]

\(10\)

100.00

100.00

50.00

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

\(5\)

100.00

100.00

100.00

[[_homogeneous, ‘class D‘], _Riccati]

\(21\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

\(5\)

100.00

100.00

100.00

[_rational, _Abel]

\(26\)

100.00

100.00

3.85

[[_homogeneous, ‘class G‘], _Riccati]

\(5\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(5\)

100.00

100.00

80.00

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

\(8\)

100.00

100.00

62.50

[_exact, _rational, _Bernoulli]

\(4\)

75.00

75.00

75.00

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(5\)

100.00

100.00

80.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(4\)

100.00

100.00

100.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(24\)

100.00

100.00

16.67

unknown

\(8\)

75.00

50.00

12.50

[_rational, _dAlembert]

\(14\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

\(10\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

\(13\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(17\)

100.00

100.00

5.88

[_Clairaut]

\(10\)

100.00

100.00

0.00

[_ellipsoidal]

\(6\)

83.33

100.00

0.00

[_Titchmarsh]

\(3\)

66.67

66.67

66.67

[_Hermite]

\(26\)

100.00

100.00

38.46

[[_Bessel, _modified]]

\(3\)

100.00

100.00

100.00

[[_Painleve, ‘1st‘]]

\(2\)

0.00

0.00

0.00

[[_Painleve, ‘2nd‘]]

\(2\)

0.00

0.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(4\)

25.00

25.00

0.00

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(2\)

50.00

50.00

0.00

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(13\)

100.00

100.00

0.00

[[_2nd_order, _with_potential_symmetries]]

\(3\)

66.67

100.00

0.00

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(26\)

96.15

100.00

0.00

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(11\)

100.00

100.00

0.00

[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

\(2\)

0.00

100.00

0.00

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

\(9\)

100.00

100.00

44.44

[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(1\)

100.00

100.00

0.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(11\)

100.00

100.00

0.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1]]

\(1\)

100.00

100.00

0.00

[_Emden, [_2nd_order, _with_linear_symmetries]]

\(2\)

50.00

50.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(7\)

100.00

100.00

0.00

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

\(8\)

100.00

100.00

100.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(6\)

100.00

100.00

0.00

[[_2nd_order, _reducible, _mu_xy]]

\(3\)

100.00

100.00

0.00

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(3\)

66.67

33.33

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(6\)

100.00

100.00

0.00

[[_Painleve, ‘4th‘]]

\(2\)

0.00

0.00

0.00

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(11\)

100.00

100.00

0.00

[_Liouville, [_Painleve, ‘3rd‘], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(1\)

100.00

100.00

0.00

[[_Painleve, ‘3rd‘]]

\(2\)

0.00

0.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

\(7\)

85.71

100.00

0.00

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(18\)

100.00

100.00

0.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(12\)

91.67

100.00

0.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

\(2\)

50.00

100.00

0.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(1\)

100.00

100.00

0.00

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

\(5\)

100.00

100.00

80.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

\(4\)

0.00

0.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

\(5\)

0.00

0.00

0.00

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

\(3\)

100.00

100.00

66.67

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(1\)

0.00

0.00

0.00

[[_3rd_order, _fully, _exact, _linear]]

\(21\)

100.00

100.00

14.29

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

\(5\)

0.00

0.00

0.00

[[_high_order, _fully, _exact, _linear]]

\(2\)

100.00

100.00

0.00

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\(13\)

92.31

92.31

38.46

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

\(11\)

36.36

36.36

0.00

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\(2\)

50.00

100.00

0.00

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

\(2\)

50.00

100.00

0.00

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\(1\)

100.00

100.00

0.00

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

\(6\)

50.00

83.33

0.00

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

\(1\)

100.00

100.00

0.00

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\(8\)

100.00

100.00

25.00

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\(3\)

100.00

100.00

0.00

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\(3\)

100.00

100.00

0.00

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

\(3\)

100.00

66.67

0.00

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

\(4\)

100.00

100.00

0.00

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

\(4\)

75.00

75.00

0.00

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

\(1\)

100.00

100.00

100.00

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

\(5\)

40.00

100.00

0.00

[[_homogeneous, ‘class G‘], _rational, _Abel]

\(3\)

100.00

100.00

0.00

[[_elliptic, _class_I]]

\(2\)

100.00

100.00

50.00

[[_elliptic, _class_II]]

\(2\)

100.00

100.00

50.00

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

\(1\)

100.00

100.00

0.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(2\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(3\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(5\)

100.00

100.00

60.00

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\(1\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(39\)

100.00

94.87

35.90

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

\(3\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(5\)

100.00

100.00

100.00

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

\(3\)

100.00

100.00

0.00

[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(2\)

100.00

100.00

0.00

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

100.00

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(4\)

100.00

100.00

75.00

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(1\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

\(7\)

100.00

100.00

57.14

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(8\)

100.00

100.00

50.00

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(4\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], _Abel]

\(16\)

100.00

100.00

50.00

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(7\)

100.00

100.00

71.43

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(2\)

100.00

100.00

0.00

[[_homogeneous, ‘class D‘], _rational, _Abel]

\(3\)

100.00

100.00

33.33

[[_homogeneous, ‘class C‘], _rational, _Abel]

\(3\)

100.00

100.00

0.00

[[_Abel, ‘2nd type‘, ‘class C‘]]

\(5\)

100.00

100.00

0.00

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(3\)

100.00

100.00

33.33

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(1\)

100.00

100.00

0.00

[[_homogeneous, ‘class C‘], _Abel]

\(3\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(6\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

\(5\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

\(10\)

100.00

100.00

40.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(2\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

\(2\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

\(1\)

100.00

100.00

100.00

[_Halm]

\(4\)

100.00

100.00

100.00

[[_Painleve, ‘5th‘]]

\(1\)

0.00

0.00

0.00

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

100.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

100.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(2\)

50.00

100.00

0.00

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

\(1\)

100.00

100.00

0.00

[[_1st_order, _with_exponential_symmetries], _exact]

\(1\)

100.00

100.00

100.00

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

\(1\)

100.00

100.00

100.00

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

\(3\)

100.00

100.00

100.00

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

\(1\)

100.00

100.00

100.00

[[_high_order, _exact, _linear, _homogeneous]]

\(3\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(1\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(2\)

100.00

100.00

50.00

[[_2nd_order, _missing_x], _Van_der_Pol]

\(2\)

0.00

50.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(1\)

0.00

100.00

0.00

[[_homogeneous, ‘class D‘], _exact, _rational]

\(1\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(2\)

100.00

100.00

100.00

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

\(1\)

100.00

100.00

100.00

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\(1\)

0.00

100.00

0.00

[[_2nd_order, _missing_x], [_Emden, _modified]]

\(1\)

0.00

0.00

0.00

[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]

\(1\)

0.00

100.00

0.00

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert]

\(2\)

0.00

100.00

0.00

[[_3rd_order, _reducible, _mu_y2]]

\(1\)

100.00

100.00

100.00

[_sym_implicit]

\(1\)

0.00

100.00

0.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(1\)

100.00

100.00

0.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(2\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], _exact, _rational, _Bernoulli]

\(1\)

100.00

100.00

100.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

100.00