| ODE type | Count | MMA | Maple | Sympy |
| [_quadrature] |
\(1369\) |
95.98 |
99.56 |
90.94 |
| [[_2nd_order, _quadrature]] |
\(127\) |
99.21 |
98.43 |
96.06 |
| [[_linear, ‘class A‘]] |
\(522\) |
99.81 |
99.43 |
93.87 |
| [_separable] |
\(1902\) |
98.05 |
99.26 |
92.32 |
| [[_homogeneous, ‘class C‘], _dAlembert] |
\(131\) |
93.13 |
98.47 |
74.81 |
| [_Riccati] |
\(343\) |
69.68 |
74.64 |
4.96 |
| [[_Riccati, _special]] |
\(44\) |
100.00 |
100.00 |
6.82 |
| [[_homogeneous, ‘class G‘]] |
\(97\) |
93.81 |
95.88 |
44.33 |
| [_linear] |
\(1079\) |
99.44 |
99.54 |
93.05 |
| [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(52\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
\(195\) |
100.00 |
100.00 |
98.97 |
| [[_homogeneous, ‘class A‘], _dAlembert] |
\(207\) |
98.07 |
100.00 |
62.80 |
| [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(158\) |
98.73 |
99.37 |
77.22 |
| [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(98\) |
100.00 |
100.00 |
78.57 |
| [[_homogeneous, ‘class A‘], _rational, _dAlembert] |
\(344\) |
95.64 |
100.00 |
80.23 |
| [[_homogeneous, ‘class C‘], _Riccati] |
\(43\) |
100.00 |
100.00 |
97.67 |
| [[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
\(14\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
\(130\) |
100.00 |
100.00 |
97.69 |
| [_Bernoulli] |
\(176\) |
99.43 |
100.00 |
88.64 |
| [[_1st_order, _with_linear_symmetries], _Bernoulli] |
\(16\) |
100.00 |
100.00 |
100.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
\(52\) |
100.00 |
100.00 |
40.38 |
| [‘y=_G(x,y”)‘] |
\(192\) |
60.94 |
60.94 |
21.35 |
| [[_1st_order, _with_linear_symmetries]] |
\(150\) |
91.33 |
98.67 |
28.67 |
| [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
\(55\) |
98.18 |
100.00 |
29.09 |
| [_exact, _rational] |
\(76\) |
94.74 |
100.00 |
0.00 |
| [_exact] |
\(149\) |
93.29 |
98.66 |
2.68 |
| [[_1st_order, _with_linear_symmetries], _exact, _rational] |
\(10\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _missing_y]] |
\(365\) |
96.71 |
98.63 |
84.93 |
| [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(20\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _missing_x]] |
\(1620\) |
96.36 |
97.16 |
90.31 |
| [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
\(18\) |
100.00 |
100.00 |
100.00 |
| [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
\(6\) |
100.00 |
100.00 |
83.33 |
| [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
\(22\) |
95.45 |
100.00 |
0.00 |
| [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
\(175\) |
87.43 |
94.29 |
20.57 |
| [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(23\) |
56.52 |
100.00 |
0.00 |
| [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(71\) |
100.00 |
98.59 |
0.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(96\) |
98.96 |
98.96 |
46.88 |
| [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(277\) |
98.92 |
98.92 |
81.23 |
| [[_1st_order, _with_linear_symmetries], _Clairaut] |
\(105\) |
100.00 |
100.00 |
60.00 |
| [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(5\) |
100.00 |
100.00 |
60.00 |
| [[_homogeneous, ‘class G‘], _exact, _rational] |
\(15\) |
80.00 |
100.00 |
46.67 |
| [[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(207\) |
99.03 |
99.03 |
98.07 |
| [[_Emden, _Fowler]] |
\(524\) |
99.43 |
97.33 |
88.93 |
| [[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
\(18\) |
11.11 |
22.22 |
0.00 |
| [[_2nd_order, _exact, _linear, _homogeneous]] |
\(377\) |
99.47 |
98.67 |
73.47 |
| [[_3rd_order, _missing_x]] |
\(420\) |
99.52 |
100.00 |
97.86 |
| [[_3rd_order, _with_linear_symmetries]] |
\(280\) |
94.29 |
93.93 |
58.21 |
| [[_2nd_order, _with_linear_symmetries]] |
\(4131\) |
95.13 |
95.76 |
52.97 |
| [_Gegenbauer] |
\(133\) |
100.00 |
100.00 |
42.11 |
| [[_high_order, _missing_x]] |
\(426\) |
99.77 |
99.77 |
99.06 |
| [[_3rd_order, _missing_y]] |
\(205\) |
98.54 |
100.00 |
88.29 |
| [[_3rd_order, _exact, _linear, _homogeneous]] |
\(32\) |
96.88 |
96.88 |
84.38 |
| [[_2nd_order, _linear, _nonhomogeneous]] |
\(2047\) |
98.39 |
98.24 |
82.46 |
| [[_high_order, _linear, _nonhomogeneous]] |
\(166\) |
98.19 |
98.80 |
92.77 |
| [[_high_order, _missing_y]] |
\(119\) |
99.16 |
98.32 |
90.76 |
| [[_2nd_order, _exact, _linear, _nonhomogeneous]] |
\(127\) |
100.00 |
100.00 |
59.06 |
| [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(133\) |
93.98 |
97.74 |
24.06 |
| [_Lienard] |
\(95\) |
98.95 |
98.95 |
84.21 |
| [_Bessel] |
\(43\) |
100.00 |
95.35 |
72.09 |
| [_Jacobi] |
\(67\) |
97.01 |
100.00 |
26.87 |
| [_Laguerre] |
\(72\) |
100.00 |
100.00 |
41.67 |
| system_of_ODEs |
\(1865\) |
96.35 |
97.00 |
90.03 |
| [[_high_order, _with_linear_symmetries]] |
\(100\) |
87.00 |
85.00 |
49.00 |
| [[_homogeneous, ‘class A‘], _rational, _Riccati] |
\(39\) |
100.00 |
100.00 |
89.74 |
| [‘x=_G(y,y”)‘] |
\(18\) |
61.11 |
61.11 |
11.11 |
| [[_Abel, ‘2nd type‘, ‘class B‘]] |
\(17\) |
35.29 |
47.06 |
0.00 |
| [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(19\) |
100.00 |
100.00 |
10.53 |
| [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
\(44\) |
97.73 |
100.00 |
84.09 |
| [[_homogeneous, ‘class D‘], _rational] |
\(4\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, _with_exponential_symmetries]] |
\(15\) |
100.00 |
100.00 |
80.00 |
| [_rational] |
\(166\) |
78.92 |
71.69 |
4.22 |
| [_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(181\) |
33.70 |
53.59 |
3.87 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(4\) |
100.00 |
100.00 |
25.00 |
| [NONE] |
\(134\) |
32.09 |
28.36 |
1.49 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
\(41\) |
100.00 |
97.56 |
82.93 |
| [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(93\) |
98.92 |
100.00 |
76.34 |
| [_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(35\) |
100.00 |
100.00 |
48.57 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
\(64\) |
100.00 |
100.00 |
26.56 |
| [[_homogeneous, ‘class C‘], _rational, _Riccati] |
\(5\) |
100.00 |
100.00 |
100.00 |
| [[_Abel, ‘2nd type‘, ‘class A‘]] |
\(34\) |
17.65 |
38.24 |
0.00 |
| [_rational, _Bernoulli] |
\(72\) |
100.00 |
100.00 |
95.83 |
| [[_homogeneous, ‘class A‘]] |
\(9\) |
100.00 |
100.00 |
66.67 |
| [[_homogeneous, ‘class G‘], _rational, _Riccati] |
\(22\) |
100.00 |
100.00 |
95.45 |
| [[_1st_order, _with_linear_symmetries], _Riccati] |
\(11\) |
100.00 |
100.00 |
100.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(2\) |
100.00 |
100.00 |
50.00 |
| [_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(22\) |
100.00 |
100.00 |
0.00 |
| [_exact, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(7\) |
100.00 |
100.00 |
0.00 |
| [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(16\) |
100.00 |
100.00 |
12.50 |
| [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(4\) |
100.00 |
100.00 |
25.00 |
| [_exact, _Bernoulli] |
\(9\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
\(20\) |
100.00 |
100.00 |
100.00 |
| [_rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
\(12\) |
83.33 |
83.33 |
8.33 |
| [[_homogeneous, ‘class G‘], _rational] |
\(169\) |
98.22 |
99.41 |
55.62 |
| [[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(2\) |
100.00 |
100.00 |
0.00 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
\(14\) |
100.00 |
100.00 |
71.43 |
| [_rational, _Riccati] |
\(108\) |
95.37 |
97.22 |
12.96 |
| [[_3rd_order, _linear, _nonhomogeneous]] |
\(181\) |
96.69 |
96.69 |
88.40 |
| [[_3rd_order, _exact, _linear, _nonhomogeneous]] |
\(18\) |
100.00 |
100.00 |
83.33 |
| [[_high_order, _exact, _linear, _nonhomogeneous]] |
\(11\) |
90.91 |
81.82 |
81.82 |
| [[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(54\) |
100.00 |
100.00 |
88.89 |
| [_exact, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(3\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(3\) |
100.00 |
100.00 |
100.00 |
| [_Abel] |
\(45\) |
68.89 |
66.67 |
4.44 |
| [_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(6\) |
100.00 |
100.00 |
83.33 |
| [[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
\(7\) |
57.14 |
100.00 |
0.00 |
| [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
\(7\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(6\) |
100.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(10\) |
100.00 |
100.00 |
100.00 |
| [_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
\(17\) |
100.00 |
100.00 |
94.12 |
| [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(7\) |
100.00 |
100.00 |
57.14 |
| [[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
\(50\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class D‘], _Bernoulli] |
\(8\) |
100.00 |
100.00 |
100.00 |
| [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
\(11\) |
100.00 |
100.00 |
81.82 |
| [[_homogeneous, ‘class A‘], _exact, _dAlembert] |
\(7\) |
100.00 |
100.00 |
71.43 |
| [[_high_order, _quadrature]] |
\(36\) |
100.00 |
100.00 |
100.00 |
| [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
\(54\) |
100.00 |
100.00 |
33.33 |
| [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
\(54\) |
98.15 |
94.44 |
83.33 |
| [[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
\(8\) |
87.50 |
100.00 |
0.00 |
| [[_homogeneous, ‘class C‘], _rational, _dAlembert] |
\(18\) |
100.00 |
100.00 |
61.11 |
| [_dAlembert] |
\(39\) |
100.00 |
97.44 |
0.00 |
| [[_1st_order, _with_linear_symmetries], _dAlembert] |
\(89\) |
83.15 |
100.00 |
19.10 |
| [[_homogeneous, ‘class G‘], _rational, _Clairaut] |
\(16\) |
100.00 |
100.00 |
18.75 |
| [[_homogeneous, ‘class G‘], _Clairaut] |
\(4\) |
100.00 |
100.00 |
100.00 |
| [[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
\(40\) |
97.50 |
100.00 |
2.50 |
| [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(3\) |
100.00 |
100.00 |
66.67 |
| [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
\(29\) |
100.00 |
100.00 |
0.00 |
| [[_3rd_order, _exact, _nonlinear]] |
\(5\) |
20.00 |
40.00 |
0.00 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(9\) |
100.00 |
100.00 |
100.00 |
| [[_3rd_order, _quadrature]] |
\(35\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class G‘], _exact] |
\(4\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
\(14\) |
100.00 |
100.00 |
100.00 |
| [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
\(2\) |
100.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class A‘], _exact, _rational, _Riccati] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [_erf] |
\(6\) |
100.00 |
100.00 |
33.33 |
| [_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(4\) |
100.00 |
100.00 |
25.00 |
| [[_homogeneous, ‘class D‘]] |
\(15\) |
100.00 |
100.00 |
6.67 |
| [_exact, _rational, _Riccati] |
\(5\) |
100.00 |
100.00 |
100.00 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(14\) |
100.00 |
100.00 |
42.86 |
| [[_1st_order, _with_linear_symmetries], _rational] |
\(40\) |
100.00 |
100.00 |
40.00 |
| [[_homogeneous, ‘class D‘], _rational, _Riccati] |
\(28\) |
100.00 |
100.00 |
75.00 |
| [[_1st_order, _with_linear_symmetries], _exact] |
\(5\) |
100.00 |
100.00 |
60.00 |
| [[_homogeneous, ‘class C‘], _exact, _dAlembert] |
\(7\) |
100.00 |
100.00 |
100.00 |
| [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(4\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(5\) |
100.00 |
100.00 |
60.00 |
| [_rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(46\) |
34.78 |
50.00 |
6.52 |
| [[_homogeneous, ‘class G‘], _dAlembert] |
\(6\) |
100.00 |
100.00 |
83.33 |
| [[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
\(7\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class C‘], _rational] |
\(12\) |
100.00 |
100.00 |
8.33 |
| [[_1st_order, _with_linear_symmetries], _Chini] |
\(5\) |
80.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class G‘], _Abel] |
\(6\) |
100.00 |
100.00 |
66.67 |
| [[_homogeneous, ‘class G‘], _Chini] |
\(4\) |
100.00 |
100.00 |
0.00 |
| [_Chini] |
\(5\) |
0.00 |
0.00 |
0.00 |
| [_rational, [_Riccati, _special]] |
\(10\) |
100.00 |
100.00 |
50.00 |
| [[_1st_order, _with_linear_symmetries], _rational, _Riccati] |
\(5\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class D‘], _Riccati] |
\(21\) |
100.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
\(5\) |
100.00 |
100.00 |
100.00 |
| [_rational, _Abel] |
\(26\) |
100.00 |
100.00 |
3.85 |
| [[_homogeneous, ‘class G‘], _Riccati] |
\(5\) |
100.00 |
100.00 |
0.00 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(5\) |
100.00 |
100.00 |
80.00 |
| [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
\(8\) |
100.00 |
100.00 |
62.50 |
| [_exact, _rational, _Bernoulli] |
\(4\) |
75.00 |
75.00 |
75.00 |
| [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
\(5\) |
100.00 |
100.00 |
80.00 |
| [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
\(4\) |
100.00 |
100.00 |
100.00 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(24\) |
100.00 |
100.00 |
16.67 |
| unknown |
\(8\) |
75.00 |
50.00 |
12.50 |
| [_rational, _dAlembert] |
\(14\) |
100.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class G‘], _rational, _dAlembert] |
\(10\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
\(13\) |
100.00 |
100.00 |
0.00 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
\(17\) |
100.00 |
100.00 |
5.88 |
| [_Clairaut] |
\(10\) |
100.00 |
100.00 |
0.00 |
| [_ellipsoidal] |
\(6\) |
83.33 |
100.00 |
0.00 |
| [_Titchmarsh] |
\(3\) |
66.67 |
66.67 |
66.67 |
| [_Hermite] |
\(26\) |
100.00 |
100.00 |
38.46 |
| [[_Bessel, _modified]] |
\(3\) |
100.00 |
100.00 |
100.00 |
| [[_Painleve, ‘1st‘]] |
\(2\) |
0.00 |
0.00 |
0.00 |
| [[_Painleve, ‘2nd‘]] |
\(2\) |
0.00 |
0.00 |
0.00 |
| [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(4\) |
25.00 |
25.00 |
0.00 |
| [[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(2\) |
50.00 |
50.00 |
0.00 |
| [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(13\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _with_potential_symmetries]] |
\(3\) |
66.67 |
100.00 |
0.00 |
| [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(26\) |
96.15 |
100.00 |
0.00 |
| [_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(11\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]] |
\(2\) |
0.00 |
100.00 |
0.00 |
| [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
\(9\) |
100.00 |
100.00 |
44.44 |
| [[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
\(11\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [_Emden, [_2nd_order, _with_linear_symmetries]] |
\(2\) |
50.00 |
50.00 |
0.00 |
| [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
\(7\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
\(8\) |
100.00 |
100.00 |
100.00 |
| [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(6\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _reducible, _mu_xy]] |
\(3\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(3\) |
66.67 |
33.33 |
0.00 |
| [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(6\) |
100.00 |
100.00 |
0.00 |
| [[_Painleve, ‘4th‘]] |
\(2\) |
0.00 |
0.00 |
0.00 |
| [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(11\) |
100.00 |
100.00 |
0.00 |
| [_Liouville, [_Painleve, ‘3rd‘], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_Painleve, ‘3rd‘]] |
\(2\) |
0.00 |
0.00 |
0.00 |
| [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
\(7\) |
85.71 |
100.00 |
0.00 |
| [_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(18\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(12\) |
91.67 |
100.00 |
0.00 |
| [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]] |
\(2\) |
50.00 |
100.00 |
0.00 |
| [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
\(5\) |
100.00 |
100.00 |
80.00 |
| [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
\(4\) |
0.00 |
0.00 |
0.00 |
| [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]] |
\(5\) |
0.00 |
0.00 |
0.00 |
| [[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
\(3\) |
100.00 |
100.00 |
66.67 |
| [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
\(1\) |
0.00 |
0.00 |
0.00 |
| [[_3rd_order, _fully, _exact, _linear]] |
\(21\) |
100.00 |
100.00 |
14.29 |
| [[_high_order, _missing_x], [_high_order, _with_linear_symmetries]] |
\(5\) |
0.00 |
0.00 |
0.00 |
| [[_high_order, _fully, _exact, _linear]] |
\(2\) |
100.00 |
100.00 |
0.00 |
| [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
\(13\) |
92.31 |
92.31 |
38.46 |
| [[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
\(11\) |
36.36 |
36.36 |
0.00 |
| [[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
\(2\) |
50.00 |
100.00 |
0.00 |
| [[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
\(2\) |
50.00 |
100.00 |
0.00 |
| [[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
\(6\) |
50.00 |
83.33 |
0.00 |
| [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
\(8\) |
100.00 |
100.00 |
25.00 |
| [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
\(3\) |
100.00 |
100.00 |
0.00 |
| [[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
\(3\) |
100.00 |
100.00 |
0.00 |
| [[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
\(3\) |
100.00 |
66.67 |
0.00 |
| [[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]] |
\(4\) |
100.00 |
100.00 |
0.00 |
| [[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]] |
\(4\) |
75.00 |
75.00 |
0.00 |
| [[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
\(5\) |
40.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class G‘], _rational, _Abel] |
\(3\) |
100.00 |
100.00 |
0.00 |
| [[_elliptic, _class_I]] |
\(2\) |
100.00 |
100.00 |
50.00 |
| [[_elliptic, _class_II]] |
\(2\) |
100.00 |
100.00 |
50.00 |
| [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(2\) |
100.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(3\) |
100.00 |
100.00 |
100.00 |
| [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
\(5\) |
100.00 |
100.00 |
60.00 |
| [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
\(39\) |
100.00 |
94.87 |
35.90 |
| [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
\(3\) |
100.00 |
100.00 |
100.00 |
| [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(5\) |
100.00 |
100.00 |
100.00 |
| [_Liouville, [_2nd_order, _reducible, _mu_xy]] |
\(3\) |
100.00 |
100.00 |
0.00 |
| [_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(2\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(4\) |
100.00 |
100.00 |
75.00 |
| [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(7\) |
100.00 |
100.00 |
57.14 |
| [[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
\(8\) |
100.00 |
100.00 |
50.00 |
| [[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(4\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, _with_linear_symmetries], _Abel] |
\(16\) |
100.00 |
100.00 |
50.00 |
| [[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(7\) |
100.00 |
100.00 |
71.43 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(2\) |
100.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class D‘], _rational, _Abel] |
\(3\) |
100.00 |
100.00 |
33.33 |
| [[_homogeneous, ‘class C‘], _rational, _Abel] |
\(3\) |
100.00 |
100.00 |
0.00 |
| [[_Abel, ‘2nd type‘, ‘class C‘]] |
\(5\) |
100.00 |
100.00 |
0.00 |
| [_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(3\) |
100.00 |
100.00 |
33.33 |
| [[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class C‘], _Abel] |
\(3\) |
100.00 |
100.00 |
0.00 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(6\) |
100.00 |
100.00 |
100.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
\(5\) |
100.00 |
100.00 |
0.00 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
\(10\) |
100.00 |
100.00 |
40.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(2\) |
100.00 |
100.00 |
100.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel] |
\(2\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, _with_linear_symmetries], _rational, _Abel] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [_Halm] |
\(4\) |
100.00 |
100.00 |
100.00 |
| [[_Painleve, ‘5th‘]] |
\(1\) |
0.00 |
0.00 |
0.00 |
| [[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(2\) |
50.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, _with_exponential_symmetries], _exact] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
\(3\) |
100.00 |
100.00 |
100.00 |
| [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [[_high_order, _exact, _linear, _homogeneous]] |
\(3\) |
100.00 |
100.00 |
100.00 |
| [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(2\) |
100.00 |
100.00 |
50.00 |
| [[_2nd_order, _missing_x], _Van_der_Pol] |
\(2\) |
0.00 |
50.00 |
0.00 |
| [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(1\) |
0.00 |
100.00 |
0.00 |
| [[_homogeneous, ‘class D‘], _exact, _rational] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(2\) |
100.00 |
100.00 |
100.00 |
| [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
\(1\) |
0.00 |
100.00 |
0.00 |
| [[_2nd_order, _missing_x], [_Emden, _modified]] |
\(1\) |
0.00 |
0.00 |
0.00 |
| [[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]] |
\(1\) |
0.00 |
100.00 |
0.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert] |
\(2\) |
0.00 |
100.00 |
0.00 |
| [[_3rd_order, _reducible, _mu_y2]] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [_sym_implicit] |
\(1\) |
0.00 |
100.00 |
0.00 |
| [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
| [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(2\) |
100.00 |
100.00 |
0.00 |
| [[_1st_order, _with_linear_symmetries], _exact, _rational, _Bernoulli] |
\(1\) |
100.00 |
100.00 |
100.00 |
| [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |