3.1 Performance using Maple’s ODE types classification

3.1.1 Summary table
3.1.2 [_quadrature]
3.1.3 [[_2nd_order, _quadrature]]
3.1.4 [[_linear, ‘class A‘]]
3.1.5 [_separable]
3.1.6 [[_homogeneous, ‘class C‘], _dAlembert]
3.1.7 [_Riccati]
3.1.8 [[_Riccati, _special]]
3.1.9 [[_homogeneous, ‘class G‘]]
3.1.10 [_linear]
3.1.11 [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.12 [[_homogeneous, ‘class A‘], _rational, _Bernoulli]
3.1.13 [[_homogeneous, ‘class A‘], _dAlembert]
3.1.14 [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.15 [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.16 [[_homogeneous, ‘class A‘], _rational, _dAlembert]
3.1.17 [[_homogeneous, ‘class C‘], _Riccati]
3.1.18 [[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]
3.1.19 [[_homogeneous, ‘class G‘], _rational, _Bernoulli]
3.1.20 [_Bernoulli]
3.1.21 [[_1st_order, _with_linear_symmetries], _Bernoulli]
3.1.22 [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]
3.1.23 [‘y=_G(x,y”)‘]
3.1.24 [[_1st_order, _with_linear_symmetries]]
3.1.25 [[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]
3.1.26 [_exact, _rational]
3.1.27 [_exact]
3.1.28 [[_1st_order, _with_linear_symmetries], _exact, _rational]
3.1.29 [[_2nd_order, _missing_y]]
3.1.30 [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.31 [[_2nd_order, _missing_x]]
3.1.32 [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]
3.1.33 [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]
3.1.34 [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]
3.1.35 [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
3.1.36 [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.37 [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.38 [[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]
3.1.39 [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.40 [[_1st_order, _with_linear_symmetries], _Clairaut]
3.1.41 [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.42 [[_homogeneous, ‘class G‘], _exact, _rational]
3.1.43 [[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]
3.1.44 [[_Emden, _Fowler]]
3.1.45 [[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]
3.1.46 [[_2nd_order, _exact, _linear, _homogeneous]]
3.1.47 [[_3rd_order, _missing_x]]
3.1.48 [[_3rd_order, _with_linear_symmetries]]
3.1.49 [[_2nd_order, _with_linear_symmetries]]
3.1.50 [_Gegenbauer]
3.1.51 [[_high_order, _missing_x]]
3.1.52 [[_3rd_order, _missing_y]]
3.1.53 [[_3rd_order, _exact, _linear, _homogeneous]]
3.1.54 [[_2nd_order, _linear, _nonhomogeneous]]
3.1.55 [[_high_order, _linear, _nonhomogeneous]]
3.1.56 [[_high_order, _missing_y]]
3.1.57 [[_2nd_order, _exact, _linear, _nonhomogeneous]]
3.1.58 [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]
3.1.59 [_Lienard]
3.1.60 [_Bessel]
3.1.61 [_Jacobi]
3.1.62 [_Laguerre]
3.1.63 system_of_ODEs
3.1.64 [[_high_order, _with_linear_symmetries]]
3.1.65 [[_homogeneous, ‘class A‘], _rational, _Riccati]
3.1.66 [‘x=_G(y,y”)‘]
3.1.67 [[_Abel, ‘2nd type‘, ‘class B‘]]
3.1.68 [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.69 [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]
3.1.70 [[_homogeneous, ‘class D‘], _rational]
3.1.71 [[_1st_order, _with_exponential_symmetries]]
3.1.72 [_rational]
3.1.73 [_rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.74 [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.75 [NONE]
3.1.76 [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]
3.1.77 [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.78 [_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]
3.1.79 [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]
3.1.80 [[_homogeneous, ‘class C‘], _rational, _Riccati]
3.1.81 [[_Abel, ‘2nd type‘, ‘class A‘]]
3.1.82 [_rational, _Bernoulli]
3.1.83 [[_homogeneous, ‘class A‘]]
3.1.84 [[_homogeneous, ‘class G‘], _rational, _Riccati]
3.1.85 [[_1st_order, _with_linear_symmetries], _Riccati]
3.1.86 [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]
3.1.87 [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.88 [_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.89 [_exact, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.90 [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]
3.1.91 [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.92 [_exact, _Bernoulli]
3.1.93 [[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]
3.1.94 [_rational, [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.95 [[_homogeneous, ‘class G‘], _rational]
3.1.96 [[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.97 [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]
3.1.98 [_rational, _Riccati]
3.1.99 [[_3rd_order, _linear, _nonhomogeneous]]
3.1.100 [[_3rd_order, _exact, _linear, _nonhomogeneous]]
3.1.101 [[_high_order, _exact, _linear, _nonhomogeneous]]
3.1.102 [[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.103 [_exact, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.104 [[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.105 [_Abel]
3.1.106 [_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]
3.1.107 [[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]
3.1.108 [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]
3.1.109 [[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.110 [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.111 [_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]
3.1.112 [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.113 [[_homogeneous, ‘class D‘], _rational, _Bernoulli]
3.1.114 [[_homogeneous, ‘class D‘], _Bernoulli]
3.1.115 [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]
3.1.116 [[_homogeneous, ‘class A‘], _exact, _dAlembert]
3.1.117 [[_high_order, _quadrature]]
3.1.118 [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]
3.1.119 [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]
3.1.120 [[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]
3.1.121 [[_homogeneous, ‘class C‘], _rational, _dAlembert]
3.1.122 [_dAlembert]
3.1.123 [[_1st_order, _with_linear_symmetries], _dAlembert]
3.1.124 [[_homogeneous, ‘class G‘], _rational, _Clairaut]
3.1.125 [[_homogeneous, ‘class G‘], _Clairaut]
3.1.126 [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]
3.1.127 [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.128 [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]
3.1.129 [[_3rd_order, _exact, _nonlinear]]
3.1.130 [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.131 [[_3rd_order, _quadrature]]
3.1.132 [[_homogeneous, ‘class G‘], _exact]
3.1.133 [[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]
3.1.134 [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]
3.1.135 [[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]
3.1.136 [_erf]
3.1.137 [_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]
3.1.138 [[_homogeneous, ‘class D‘]]
3.1.139 [_exact, _rational, _Riccati]
3.1.140 [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.141 [[_1st_order, _with_linear_symmetries], _rational]
3.1.142 [[_homogeneous, ‘class D‘], _rational, _Riccati]
3.1.143 [[_1st_order, _with_linear_symmetries], _exact]
3.1.144 [[_homogeneous, ‘class C‘], _exact, _dAlembert]
3.1.145 [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.146 [[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.147 [_rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.148 [[_homogeneous, ‘class G‘], _dAlembert]
3.1.149 [[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]
3.1.150 [[_homogeneous, ‘class C‘], _rational]
3.1.151 [[_1st_order, _with_linear_symmetries], _Chini]
3.1.152 [[_homogeneous, ‘class G‘], _Abel]
3.1.153 [[_homogeneous, ‘class G‘], _Chini]
3.1.154 [_Chini]
3.1.155 [_rational, [_Riccati, _special]]
3.1.156 [[_1st_order, _with_linear_symmetries], _rational, _Riccati]
3.1.157 [[_homogeneous, ‘class D‘], _Riccati]
3.1.158 [[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]
3.1.159 [_rational, _Abel]
3.1.160 [[_homogeneous, ‘class G‘], _Riccati]
3.1.161 [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.162 [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]
3.1.163 [_exact, _rational, _Bernoulli]
3.1.164 [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.165 [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]
3.1.166 [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]
3.1.167 unknown
3.1.168 [_rational, _dAlembert]
3.1.169 [[_homogeneous, ‘class G‘], _rational, _dAlembert]
3.1.170 [[_1st_order, _with_linear_symmetries], _rational, _dAlembert]
3.1.171 [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]
3.1.172 [_Clairaut]
3.1.173 [_ellipsoidal]
3.1.174 [_Titchmarsh]
3.1.175 [_Hermite]
3.1.176 [[_Bessel, _modified]]
3.1.177 [[_Painleve, ‘1st‘]]
3.1.178 [[_Painleve, ‘2nd‘]]
3.1.179 [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.180 [[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.181 [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.182 [[_2nd_order, _with_potential_symmetries]]
3.1.183 [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.184 [_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.185 [[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]
3.1.186 [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]
3.1.187 [[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]
3.1.188 [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]
3.1.189 [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1]]
3.1.190 [_Emden, [_2nd_order, _with_linear_symmetries]]
3.1.191 [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]
3.1.192 [[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]
3.1.193 [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.194 [[_2nd_order, _reducible, _mu_xy]]
3.1.195 [[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.196 [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.197 [[_Painleve, ‘4th‘]]
3.1.198 [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.199 [_Liouville, [_Painleve, ‘3rd‘], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.200 [[_Painleve, ‘3rd‘]]
3.1.201 [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]
3.1.202 [_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.203 [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.204 [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]
3.1.205 [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.206 [[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]
3.1.207 [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]
3.1.208 [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]
3.1.209 [[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]
3.1.210 [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]
3.1.211 [[_3rd_order, _fully, _exact, _linear]]
3.1.212 [[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]
3.1.213 [[_high_order, _fully, _exact, _linear]]
3.1.214 [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]
3.1.215 [[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]
3.1.216 [[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]
3.1.217 [[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]
3.1.218 [[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]
3.1.219 [[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]
3.1.220 [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]
3.1.221 [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]
3.1.222 [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]
3.1.223 [[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]
3.1.224 [[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]
3.1.225 [[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]
3.1.226 [[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]
3.1.227 [[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]
3.1.228 [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]
3.1.229 [[_homogeneous, ‘class G‘], _rational, _Abel]
3.1.230 [[_elliptic, _class_I]]
3.1.231 [[_elliptic, _class_II]]
3.1.232 [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]
3.1.233 [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]
3.1.234 [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.235 [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]
3.1.236 [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]
3.1.237 [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]
3.1.238 [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]
3.1.239 [[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.240 [_Liouville, [_2nd_order, _reducible, _mu_xy]]
3.1.241 [_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]
3.1.242 [[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.243 [[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.244 [[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.245 [[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.246 [[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.247 [[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.248 [[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]
3.1.249 [[_1st_order, _with_linear_symmetries], _Abel]
3.1.250 [[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.251 [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.252 [[_homogeneous, ‘class D‘], _rational, _Abel]
3.1.253 [[_homogeneous, ‘class C‘], _rational, _Abel]
3.1.254 [[_Abel, ‘2nd type‘, ‘class C‘]]
3.1.255 [_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]
3.1.256 [[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.257 [[_homogeneous, ‘class C‘], _Abel]
3.1.258 [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.259 [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]
3.1.260 [_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]
3.1.261 [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]
3.1.262 [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]
3.1.263 [[_1st_order, _with_linear_symmetries], _rational, _Abel]
3.1.264 [_Halm]
3.1.265 [[_Painleve, ‘5th‘]]
3.1.266 [[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.267 [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.268 [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.269 [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]
3.1.270 [[_1st_order, _with_exponential_symmetries], _exact]
3.1.271 [[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]
3.1.272 [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]
3.1.273 [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]
3.1.274 [[_high_order, _exact, _linear, _homogeneous]]
3.1.275 [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.276 [_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.277 [[_2nd_order, _missing_x], _Van_der_Pol]
3.1.278 [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
3.1.279 [[_homogeneous, ‘class D‘], _exact, _rational]
3.1.280 [_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.281 [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]
3.1.282 [[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]
3.1.283 [[_2nd_order, _missing_x], [_Emden, _modified]]
3.1.284 [[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]
3.1.285 [[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert]
3.1.286 [[_3rd_order, _reducible, _mu_y2]]
3.1.287 [_sym_implicit]
3.1.288 [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]
3.1.289 [_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]
3.1.290 [[_1st_order, _with_linear_symmetries], _exact, _rational, _Bernoulli]
3.1.291 [_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

This uses ODE classifications based on Maple’s ode advisor. A summary table is given first that shows summary of each CAS percentage solved for each ode type. Then detailed sections are given with direct link to each problem that a CAS failed to solve if any.