6.203 Problems 20201 to 20300

Table 6.405: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

20201

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x \,{\mathrm e}^{x}+{\mathrm e}^{x} \]

20202

\[ {} -y+y^{\prime \prime } = x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \]

20203

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = \cos \left (2 x \right ) {\mathrm e}^{x}+\cos \left (3 x \right ) \]

20204

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

20205

\[ {} 20 y-9 y^{\prime }+y^{\prime \prime } = 20 x \]

20206

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = {\mathrm e}^{3 x} \]

20207

\[ {} y^{\prime \prime \prime }+y = {\mathrm e}^{2 x} \sin \left (x \right )+{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

20208

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

20209

\[ {} x^{2} y^{\prime \prime }+y = 3 x^{2} \]

20210

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

20211

\[ {} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 0 \]

20212

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

20213

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

20214

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

20215

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

20216

\[ {} \left (2 x +5\right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y = 0 \]

20217

\[ {} \left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

20218

\[ {} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

20219

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

20220

\[ {} -8 y+7 x y^{\prime }-3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

20221

\[ {} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

20222

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

20223

\[ {} 2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 10 c +\frac {10}{x} \]

20224

\[ {} 16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 y^{\prime } \left (1+x \right )+y = x^{2}+4 x +3 \]

20225

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

20226

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

20227

\[ {} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = \left (\ln \left (x \right )+1\right )^{2} \]

20228

\[ {} x y-x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime } = 1 \]

20229

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

20230

\[ {} x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

20231

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

20232

\[ {} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

20233

\[ {} x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

20234

\[ {} x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

20235

\[ {} y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

20236

\[ {} \sqrt {x}\, y^{\prime \prime }+2 x y^{\prime }+3 y = x \]

20237

\[ {} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime } = x y^{2} \]

20238

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

20239

\[ {} y^{\prime \prime \prime } = x \,{\mathrm e}^{x} \]

20240

\[ {} x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

20241

\[ {} y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

20242

\[ {} y^{\prime \prime }+a^{2} y = 0 \]

20243

\[ {} y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

20244

\[ {} y^{\prime \prime }+\frac {a^{2}}{y^{2}} = 0 \]

20245

\[ {} y^{\prime \prime }-\frac {a^{2}}{y^{2}} = 0 \]

20246

\[ {} x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

20247

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

20248

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

20249

\[ {} 2 x y^{\prime \prime } y^{\prime \prime \prime } = -a^{2}+{y^{\prime \prime }}^{2} \]

20250

\[ {} y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

20251

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

20252

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = \ln \left (y\right ) y^{2} \]

20253

\[ {} 2 y^{\prime }+4 {y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

20254

\[ {} a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

20255

\[ {} y^{\left (5\right )}-m^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

20256

\[ {} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

20257

\[ {} a^{2} y^{\prime \prime } y^{\prime } = x \]

20258

\[ {} a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

20259

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

20260

\[ {} y^{\prime \prime } y^{\prime \prime \prime } = 2 \]

20261

\[ {} \left (-x^{2}+x \right ) y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

20262

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x} \]

20263

\[ {} y^{\prime \prime }+y = 0 \]

20264

\[ {} \left (2 x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

20265

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

20266

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

20267

\[ {} y+x y^{\prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

20268

\[ {} y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

20269

\[ {} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y = 0 \]

20270

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

20271

\[ {} y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

20272

\[ {} {y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

20273

\[ {} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]

20274

\[ {} y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

20275

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

20276

\[ {} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

20277

\[ {} x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

20278

\[ {} y^{\prime \prime } = \frac {a}{x} \]

20279

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

20280

\[ {} y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

20281

\[ {} y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

20282

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } \cos \left (x \right )-2 y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right ) \]

20283

\[ {} \sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

20284

\[ {} a y^{\prime \prime } = y^{\prime } \]

20285

\[ {} y^{3} y^{\prime \prime } = a \]

20286

\[ {} y^{\prime \prime \prime } = f \left (x \right ) \]

20287

\[ {} y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

20288

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x} \]

20289

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = x \]

20290

\[ {} \left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

20291

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

20292

\[ {} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

20293

\[ {} a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

20294

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

20295

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

20296

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0 \]

20297

\[ {} x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

20298

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

20299

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0 \]

20300

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]