Internal
problem
ID
[20217]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VII.
Linear
equations
with
variable
coefficients.
Problems
at
page
91
Problem
number
:
Ex.
2
Date
solved
:
Thursday, October 02, 2025 at 05:34:50 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=(2*x-1)^3*diff(diff(y(x),x),x)+(2*x-1)*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x-1)^3*D[y[x],{x,2}]+(2*x-1)*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x - 1)**3*Derivative(y(x), (x, 2)) + (2*x - 1)*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False