39.5.4 problem Problem 24.26

Internal problem ID [6546]
Book : Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014
Section : Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248
Problem number : Problem 24.26
Date solved : Wednesday, March 05, 2025 at 12:56:23 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=1 \end{align*}

Maple. Time used: 0.138 (sec). Leaf size: 6
ode:=diff(diff(y(x),x),x)-y(x) = 0; 
ic:=y(0) = 1, D(y)(0) = 1; 
dsolve([ode,ic],y(x),method='laplace');
 
\[ y = {\mathrm e}^{x} \]
Mathematica. Time used: 0.04 (sec). Leaf size: 26
ode=D[y[x],{x,2}]-y[x]==Sin[x]; 
ic={y[0]==1,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} \left (-e^{-x}+5 e^x-2 \sin (x)\right ) \]
Sympy. Time used: 0.081 (sec). Leaf size: 5
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{x} \]