Internal
problem
ID
[6545]
Book
:
Schaums
Outline
Differential
Equations,
4th
edition.
Bronson
and
Costa.
McGraw
Hill
2014
Section
:
Chapter
24.
Solutions
of
linear
DE
by
Laplace
transforms.
Supplementary
Problems.
page
248
Problem
number
:
Problem
24.19
Date
solved
:
Wednesday, March 05, 2025 at 12:56:22 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(x),x)+2*y(x) = exp(x); ic:=y(0) = 1; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],x]+2*y[x]==Exp[x]; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*y(x) - exp(x) + Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)