3.3.13 \(\int \frac {1}{(a+b x^2)^{5/2} (c+d x^2)^{3/2}} \, dx\) [213]

Optimal. Leaf size=323 \[ \frac {b x}{3 a (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}+\frac {2 b (b c-3 a d) x}{3 a^2 (b c-a d)^2 \sqrt {a+b x^2} \sqrt {c+d x^2}}+\frac {\sqrt {d} \left (2 b^2 c^2-7 a b c d-3 a^2 d^2\right ) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} (b c-a d)^3 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {b \sqrt {c} \sqrt {d} (b c-9 a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 (b c-a d)^3 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

1/3*b*x/a/(-a*d+b*c)/(b*x^2+a)^(3/2)/(d*x^2+c)^(1/2)+2/3*b*(-3*a*d+b*c)*x/a^2/(-a*d+b*c)^2/(b*x^2+a)^(1/2)/(d*
x^2+c)^(1/2)+1/3*(-3*a^2*d^2-7*a*b*c*d+2*b^2*c^2)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/
c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)*(b*x^2+a)^(1/2)/a^2/(-a*d+b*c)^3/c^(1/2)/(c*(b*x^2+a)/a/(
d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)-1/3*b*(-9*a*d+b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)
/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*d^(1/2)*(b*x^2+a)^(1/2)/a^2/(-a*d+b*c)^3/(c*(b*x^2+a)/a/
(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 323, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {425, 541, 539, 429, 422} \begin {gather*} \frac {\sqrt {d} \sqrt {a+b x^2} \left (-3 a^2 d^2-7 a b c d+2 b^2 c^2\right ) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} \sqrt {c+d x^2} (b c-a d)^3 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {b \sqrt {c} \sqrt {d} \sqrt {a+b x^2} (b c-9 a d) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c+d x^2} (b c-a d)^3 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {2 b x (b c-3 a d)}{3 a^2 \sqrt {a+b x^2} \sqrt {c+d x^2} (b c-a d)^2}+\frac {b x}{3 a \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2} (b c-a d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^2)^(5/2)*(c + d*x^2)^(3/2)),x]

[Out]

(b*x)/(3*a*(b*c - a*d)*(a + b*x^2)^(3/2)*Sqrt[c + d*x^2]) + (2*b*(b*c - 3*a*d)*x)/(3*a^2*(b*c - a*d)^2*Sqrt[a
+ b*x^2]*Sqrt[c + d*x^2]) + (Sqrt[d]*(2*b^2*c^2 - 7*a*b*c*d - 3*a^2*d^2)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqr
t[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*a^2*Sqrt[c]*(b*c - a*d)^3*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c
+ d*x^2]) - (b*Sqrt[c]*Sqrt[d]*(b*c - 9*a*d)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/
(a*d)])/(3*a^2*(b*c - a*d)^3*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 425

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1
)*(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomi
alQ[a, b, c, d, n, p, q, x]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 539

Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[(b*e - a*
f)/(b*c - a*d), Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[Sqrt[a + b
*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a] && PosQ[d/c]

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b x^2\right )^{5/2} \left (c+d x^2\right )^{3/2}} \, dx &=\frac {b x}{3 a (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}-\frac {\int \frac {-2 b c+3 a d-3 b d x^2}{\left (a+b x^2\right )^{3/2} \left (c+d x^2\right )^{3/2}} \, dx}{3 a (b c-a d)}\\ &=\frac {b x}{3 a (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}+\frac {2 b (b c-3 a d) x}{3 a^2 (b c-a d)^2 \sqrt {a+b x^2} \sqrt {c+d x^2}}+\frac {\int \frac {a d (b c+3 a d)+2 b d (b c-3 a d) x^2}{\sqrt {a+b x^2} \left (c+d x^2\right )^{3/2}} \, dx}{3 a^2 (b c-a d)^2}\\ &=\frac {b x}{3 a (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}+\frac {2 b (b c-3 a d) x}{3 a^2 (b c-a d)^2 \sqrt {a+b x^2} \sqrt {c+d x^2}}-\frac {(b d (b c-9 a d)) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 a (b c-a d)^3}+\frac {\left (d \left (2 b^2 c^2-7 a b c d-3 a^2 d^2\right )\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 a^2 (b c-a d)^3}\\ &=\frac {b x}{3 a (b c-a d) \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}+\frac {2 b (b c-3 a d) x}{3 a^2 (b c-a d)^2 \sqrt {a+b x^2} \sqrt {c+d x^2}}+\frac {\sqrt {d} \left (2 b^2 c^2-7 a b c d-3 a^2 d^2\right ) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 \sqrt {c} (b c-a d)^3 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {b \sqrt {c} \sqrt {d} (b c-9 a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 a^2 (b c-a d)^3 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 5.73, size = 337, normalized size = 1.04 \begin {gather*} \frac {\sqrt {\frac {b}{a}} x \left (3 a^4 d^3+6 a^3 b d^3 x^2-2 b^4 c^2 x^2 \left (c+d x^2\right )+a^2 b^2 d \left (8 c^2+8 c d x^2+3 d^2 x^4\right )+a b^3 c \left (-3 c^2+4 c d x^2+7 d^2 x^4\right )\right )+i b c \left (-2 b^2 c^2+7 a b c d+3 a^2 d^2\right ) \left (a+b x^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+2 i b c \left (b^2 c^2-4 a b c d+3 a^2 d^2\right ) \left (a+b x^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{3 a^2 \sqrt {\frac {b}{a}} c (-b c+a d)^3 \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^2)^(5/2)*(c + d*x^2)^(3/2)),x]

[Out]

(Sqrt[b/a]*x*(3*a^4*d^3 + 6*a^3*b*d^3*x^2 - 2*b^4*c^2*x^2*(c + d*x^2) + a^2*b^2*d*(8*c^2 + 8*c*d*x^2 + 3*d^2*x
^4) + a*b^3*c*(-3*c^2 + 4*c*d*x^2 + 7*d^2*x^4)) + I*b*c*(-2*b^2*c^2 + 7*a*b*c*d + 3*a^2*d^2)*(a + b*x^2)*Sqrt[
1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + (2*I)*b*c*(b^2*c^2 - 4*a*b
*c*d + 3*a^2*d^2)*(a + b*x^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/
(b*c)])/(3*a^2*Sqrt[b/a]*c*(-(b*c) + a*d)^3*(a + b*x^2)^(3/2)*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(963\) vs. \(2(357)=714\).
time = 0.10, size = 964, normalized size = 2.98

method result size
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (\frac {x \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}{3 a \left (a d -b c \right )^{2} \left (x^{2}+\frac {a}{b}\right )^{2}}+\frac {\left (b d \,x^{2}+b c \right ) b x \left (7 a d -2 b c \right )}{3 a^{2} \left (a d -b c \right )^{3} \sqrt {\left (x^{2}+\frac {a}{b}\right ) \left (b d \,x^{2}+b c \right )}}+\frac {\left (b d \,x^{2}+a d \right ) d^{2} x}{c \left (a d -b c \right )^{3} \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (b d \,x^{2}+a d \right )}}+\frac {\left (\frac {b d}{3 a \left (a d -b c \right )^{2}}-\frac {b \left (7 a d -2 b c \right )}{3 \left (a d -b c \right )^{2} a^{2}}-\frac {b^{2} c \left (7 a d -2 b c \right )}{3 a^{2} \left (a d -b c \right )^{3}}+\frac {d^{2}}{\left (a d -b c \right )^{2} c}-\frac {a \,d^{3}}{c \left (a d -b c \right )^{3}}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}-\frac {\left (-\frac {b^{2} d \left (7 a d -2 b c \right )}{3 a^{2} \left (a d -b c \right )^{3}}-\frac {b \,d^{3}}{c \left (a d -b c \right )^{3}}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}\, d}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(561\)
default \(-\frac {-3 \sqrt {-\frac {b}{a}}\, a^{2} b^{2} d^{3} x^{5}-7 \sqrt {-\frac {b}{a}}\, a \,b^{3} c \,d^{2} x^{5}+2 \sqrt {-\frac {b}{a}}\, b^{4} c^{2} d \,x^{5}+6 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b^{2} c \,d^{2} x^{2}-8 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{3} c^{2} d \,x^{2}+2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{4} c^{3} x^{2}+3 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b^{2} c \,d^{2} x^{2}+7 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{3} c^{2} d \,x^{2}-2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{4} c^{3} x^{2}-6 \sqrt {-\frac {b}{a}}\, a^{3} b \,d^{3} x^{3}-8 \sqrt {-\frac {b}{a}}\, a^{2} b^{2} c \,d^{2} x^{3}-4 \sqrt {-\frac {b}{a}}\, a \,b^{3} c^{2} d \,x^{3}+2 \sqrt {-\frac {b}{a}}\, b^{4} c^{3} x^{3}+6 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{3} b c \,d^{2}-8 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b^{2} c^{2} d +2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{3} c^{3}+3 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{3} b c \,d^{2}+7 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b^{2} c^{2} d -2 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{3} c^{3}-3 \sqrt {-\frac {b}{a}}\, a^{4} d^{3} x -8 \sqrt {-\frac {b}{a}}\, a^{2} b^{2} c^{2} d x +3 \sqrt {-\frac {b}{a}}\, a \,b^{3} c^{3} x}{3 \sqrt {d \,x^{2}+c}\, \left (a d -b c \right )^{3} a^{2} \sqrt {-\frac {b}{a}}\, c \left (b \,x^{2}+a \right )^{\frac {3}{2}}}\) \(964\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*(-3*(-b/a)^(1/2)*a^2*b^2*d^3*x^5-7*(-b/a)^(1/2)*a*b^3*c*d^2*x^5+2*(-b/a)^(1/2)*b^4*c^2*d*x^5+6*((b*x^2+a)
/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*b^2*c*d^2*x^2-8*((b*x^2+a)/a)^(1/2
)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^3*c^2*d*x^2+2*((b*x^2+a)/a)^(1/2)*((d*x^2+
c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^4*c^3*x^2+3*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*El
lipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*b^2*c*d^2*x^2+7*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(
x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^3*c^2*d*x^2-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(
1/2),(a*d/b/c)^(1/2))*b^4*c^3*x^2-6*(-b/a)^(1/2)*a^3*b*d^3*x^3-8*(-b/a)^(1/2)*a^2*b^2*c*d^2*x^3-4*(-b/a)^(1/2)
*a*b^3*c^2*d*x^3+2*(-b/a)^(1/2)*b^4*c^3*x^3+6*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2)
,(a*d/b/c)^(1/2))*a^3*b*c*d^2-8*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/
2))*a^2*b^2*c^2*d+2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^3*c^
3+3*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^3*b*c*d^2+7*((b*x^2+a)
/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*b^2*c^2*d-2*((b*x^2+a)/a)^(1/2)*((
d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^3*c^3-3*(-b/a)^(1/2)*a^4*d^3*x-8*(-b/a)^(1/2)*
a^2*b^2*c^2*d*x+3*(-b/a)^(1/2)*a*b^3*c^3*x)/(d*x^2+c)^(1/2)/(a*d-b*c)^3/a^2/(-b/a)^(1/2)/c/(b*x^2+a)^(3/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)^(5/2)*(d*x^2 + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b x^{2}\right )^{\frac {5}{2}} \left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)**(5/2)/(d*x**2+c)**(3/2),x)

[Out]

Integral(1/((a + b*x**2)**(5/2)*(c + d*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*x^2 + a)^(5/2)*(d*x^2 + c)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\left (b\,x^2+a\right )}^{5/2}\,{\left (d\,x^2+c\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^2)^(5/2)*(c + d*x^2)^(3/2)),x)

[Out]

int(1/((a + b*x^2)^(5/2)*(c + d*x^2)^(3/2)), x)

________________________________________________________________________________________