3.3.12 \(\int \frac {1}{(a+b x^2)^{3/2} (c+d x^2)^{3/2}} \, dx\) [212]

Optimal. Leaf size=242 \[ \frac {b x}{a (b c-a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}+\frac {\sqrt {d} (b c+a d) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {c} (b c-a d)^2 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {2 b \sqrt {c} \sqrt {d} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a (b c-a d)^2 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

b*x/a/(-a*d+b*c)/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)+(a*d+b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x
*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)*(b*x^2+a)^(1/2)/a/(-a*d+b*c)^2/c^(1/2)/(c*(b*x^2
+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)-2*b*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)
/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*d^(1/2)*(b*x^2+a)^(1/2)/a/(-a*d+b*c)^2/(c*(b*x^2+a)/a/(d*x^2+c))
^(1/2)/(d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 242, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {425, 539, 429, 422} \begin {gather*} -\frac {2 b \sqrt {c} \sqrt {d} \sqrt {a+b x^2} F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {c+d x^2} (b c-a d)^2 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\sqrt {d} \sqrt {a+b x^2} (a d+b c) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {c} \sqrt {c+d x^2} (b c-a d)^2 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {b x}{a \sqrt {a+b x^2} \sqrt {c+d x^2} (b c-a d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^2)^(3/2)*(c + d*x^2)^(3/2)),x]

[Out]

(b*x)/(a*(b*c - a*d)*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]) + (Sqrt[d]*(b*c + a*d)*Sqrt[a + b*x^2]*EllipticE[ArcTan[
(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*Sqrt[c]*(b*c - a*d)^2*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c
+ d*x^2]) - (2*b*Sqrt[c]*Sqrt[d]*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*(
b*c - a*d)^2*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 425

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1
)*(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomi
alQ[a, b, c, d, n, p, q, x]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 539

Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[(b*e - a*
f)/(b*c - a*d), Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[Sqrt[a + b
*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b x^2\right )^{3/2} \left (c+d x^2\right )^{3/2}} \, dx &=\frac {b x}{a (b c-a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}-\frac {\int \frac {a d-b d x^2}{\sqrt {a+b x^2} \left (c+d x^2\right )^{3/2}} \, dx}{a (b c-a d)}\\ &=\frac {b x}{a (b c-a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}-\frac {(2 b d) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{(b c-a d)^2}+\frac {(d (b c+a d)) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{a (b c-a d)^2}\\ &=\frac {b x}{a (b c-a d) \sqrt {a+b x^2} \sqrt {c+d x^2}}+\frac {\sqrt {d} (b c+a d) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {c} (b c-a d)^2 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {2 b \sqrt {c} \sqrt {d} \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a (b c-a d)^2 \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 4.51, size = 224, normalized size = 0.93 \begin {gather*} \frac {\sqrt {\frac {b}{a}} \left (\sqrt {\frac {b}{a}} x \left (a^2 d^2+a b d^2 x^2+b^2 c \left (c+d x^2\right )\right )+i b c (b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+i b c (-b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{b c (b c-a d)^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^2)^(3/2)*(c + d*x^2)^(3/2)),x]

[Out]

(Sqrt[b/a]*(Sqrt[b/a]*x*(a^2*d^2 + a*b*d^2*x^2 + b^2*c*(c + d*x^2)) + I*b*c*(b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sq
rt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + I*b*c*(-(b*c) + a*d)*Sqrt[1 + (b*x^2)/a]*Sq
rt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(b*c*(b*c - a*d)^2*Sqrt[a + b*x^2]*Sqrt[c +
 d*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 354, normalized size = 1.46

method result size
default \(\frac {\left (\sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{3}+\sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{3}-\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d -\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2}-\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a b c d +\sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{2} c^{2}+\sqrt {-\frac {b}{a}}\, a^{2} d^{2} x +\sqrt {-\frac {b}{a}}\, b^{2} c^{2} x \right ) \sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}}{c \sqrt {-\frac {b}{a}}\, a \left (a d -b c \right )^{2} \left (b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c \right )}\) \(354\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (-\frac {2 b d \left (-\frac {\left (a d +b c \right ) x^{3}}{2 a c \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right )}-\frac {\left (a^{2} d^{2}+b^{2} c^{2}\right ) x}{2 a c \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) b d}\right )}{\sqrt {\left (x^{4}+\frac {\left (a d +b c \right ) x^{2}}{b d}+\frac {a c}{b d}\right ) b d}}+\frac {\left (\frac {1}{a c}-\frac {a^{2} d^{2}+b^{2} c^{2}}{a c \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right )}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}+\frac {b \left (a d +b c \right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{a \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(464\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)^(3/2)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

((-b/a)^(1/2)*a*b*d^2*x^3+(-b/a)^(1/2)*b^2*c*d*x^3-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^
(1/2),(a*d/b/c)^(1/2))*a*b*c*d-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2
))*b^2*c^2-((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b*c*d+((b*x^2+a
)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^2*c^2+(-b/a)^(1/2)*a^2*d^2*x+(-b/a)
^(1/2)*b^2*c^2*x)*(d*x^2+c)^(1/2)*(b*x^2+a)^(1/2)/c/(-b/a)^(1/2)/a/(a*d-b*c)^2/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(3/2)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)^(3/2)*(d*x^2 + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(3/2)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b x^{2}\right )^{\frac {3}{2}} \left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)**(3/2)/(d*x**2+c)**(3/2),x)

[Out]

Integral(1/((a + b*x**2)**(3/2)*(c + d*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(3/2)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*x^2 + a)^(3/2)*(d*x^2 + c)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\left (b\,x^2+a\right )}^{3/2}\,{\left (d\,x^2+c\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^2)^(3/2)*(c + d*x^2)^(3/2)),x)

[Out]

int(1/((a + b*x^2)^(3/2)*(c + d*x^2)^(3/2)), x)

________________________________________________________________________________________