3.3.8 \(\int \frac {(a+b x^2)^{5/2}}{(c+d x^2)^{3/2}} \, dx\) [208]

Optimal. Leaf size=346 \[ -\frac {\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) x \sqrt {a+b x^2}}{3 c d^2 \sqrt {c+d x^2}}-\frac {(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt {c+d x^2}}+\frac {b (4 b c-3 a d) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c d^2}+\frac {\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 \sqrt {c} d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {2 b \sqrt {c} (2 b c-3 a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

-(-a*d+b*c)*x*(b*x^2+a)^(3/2)/c/d/(d*x^2+c)^(1/2)-1/3*(3*a^2*d^2-13*a*b*c*d+8*b^2*c^2)*x*(b*x^2+a)^(1/2)/c/d^2
/(d*x^2+c)^(1/2)+1/3*(3*a^2*d^2-13*a*b*c*d+8*b^2*c^2)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1
/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(b*x^2+a)^(1/2)/d^(5/2)/c^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/
2)/(d*x^2+c)^(1/2)-2/3*b*(-3*a*d+2*b*c)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1
+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*(b*x^2+a)^(1/2)/d^(5/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(
1/2)+1/3*b*(-3*a*d+4*b*c)*x*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/c/d^2

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 346, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {424, 542, 545, 429, 506, 422} \begin {gather*} \frac {\sqrt {a+b x^2} \left (3 a^2 d^2-13 a b c d+8 b^2 c^2\right ) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 \sqrt {c} d^{5/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {x \sqrt {a+b x^2} \left (3 a^2 d^2-13 a b c d+8 b^2 c^2\right )}{3 c d^2 \sqrt {c+d x^2}}-\frac {2 b \sqrt {c} \sqrt {a+b x^2} (2 b c-3 a d) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {b x \sqrt {a+b x^2} \sqrt {c+d x^2} (4 b c-3 a d)}{3 c d^2}-\frac {x \left (a+b x^2\right )^{3/2} (b c-a d)}{c d \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(5/2)/(c + d*x^2)^(3/2),x]

[Out]

-1/3*((8*b^2*c^2 - 13*a*b*c*d + 3*a^2*d^2)*x*Sqrt[a + b*x^2])/(c*d^2*Sqrt[c + d*x^2]) - ((b*c - a*d)*x*(a + b*
x^2)^(3/2))/(c*d*Sqrt[c + d*x^2]) + (b*(4*b*c - 3*a*d)*x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*c*d^2) + ((8*b^2*
c^2 - 13*a*b*c*d + 3*a^2*d^2)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*Sqrt
[c]*d^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) - (2*b*Sqrt[c]*(2*b*c - 3*a*d)*Sqrt[a + b*x
^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*
Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 424

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a*d - c*b)*x*(a + b*x^n)^(
p + 1)*((c + d*x^n)^(q - 1)/(a*b*n*(p + 1))), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 542

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
f*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(n*(p + q + 1) + 1))), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^{5/2}}{\left (c+d x^2\right )^{3/2}} \, dx &=-\frac {(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt {c+d x^2}}+\frac {\int \frac {\sqrt {a+b x^2} \left (a b c+b (4 b c-3 a d) x^2\right )}{\sqrt {c+d x^2}} \, dx}{c d}\\ &=-\frac {(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt {c+d x^2}}+\frac {b (4 b c-3 a d) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c d^2}+\frac {\int \frac {-2 a b c (2 b c-3 a d)-b \left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 c d^2}\\ &=-\frac {(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt {c+d x^2}}+\frac {b (4 b c-3 a d) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c d^2}-\frac {(2 a b (2 b c-3 a d)) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d^2}-\frac {\left (b \left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right )\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 c d^2}\\ &=-\frac {\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) x \sqrt {a+b x^2}}{3 c d^2 \sqrt {c+d x^2}}-\frac {(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt {c+d x^2}}+\frac {b (4 b c-3 a d) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c d^2}-\frac {2 b \sqrt {c} (2 b c-3 a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 d^2}\\ &=-\frac {\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) x \sqrt {a+b x^2}}{3 c d^2 \sqrt {c+d x^2}}-\frac {(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt {c+d x^2}}+\frac {b (4 b c-3 a d) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{3 c d^2}+\frac {\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 \sqrt {c} d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {2 b \sqrt {c} (2 b c-3 a d) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 4.68, size = 256, normalized size = 0.74 \begin {gather*} \frac {\sqrt {\frac {b}{a}} d x \left (a+b x^2\right ) \left (-6 a b c d+3 a^2 d^2+b^2 c \left (4 c+d x^2\right )\right )+i b c \left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-i b c \left (8 b^2 c^2-17 a b c d+9 a^2 d^2\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{3 \sqrt {\frac {b}{a}} c d^3 \sqrt {a+b x^2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(5/2)/(c + d*x^2)^(3/2),x]

[Out]

(Sqrt[b/a]*d*x*(a + b*x^2)*(-6*a*b*c*d + 3*a^2*d^2 + b^2*c*(4*c + d*x^2)) + I*b*c*(8*b^2*c^2 - 13*a*b*c*d + 3*
a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*b*c*(8*b^2
*c^2 - 17*a*b*c*d + 9*a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)
/(b*c)])/(3*Sqrt[b/a]*c*d^3*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.11, size = 539, normalized size = 1.56

method result size
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (\frac {\left (b d \,x^{2}+a d \right ) \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) x}{d^{3} c \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (b d \,x^{2}+a d \right )}}+\frac {b^{2} x \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}{3 d^{2}}+\frac {\left (\frac {b \left (3 a^{2} d^{2}-3 a b c d +b^{2} c^{2}\right )}{d^{3}}+\frac {\left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \left (a d -b c \right )}{d^{3} c}-\frac {a \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right )}{d^{2} c}-\frac {c a \,b^{2}}{3 d^{2}}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}-\frac {\left (\frac {b^{2} \left (3 a d -b c \right )}{d^{2}}-\frac {\left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) b}{d^{2} c}-\frac {b^{2} \left (2 a d +2 b c \right )}{3 d^{2}}\right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}\, d}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(509\)
default \(\frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (\sqrt {-\frac {b}{a}}\, b^{3} c \,d^{2} x^{5}+3 \sqrt {-\frac {b}{a}}\, a^{2} b \,d^{3} x^{3}-5 \sqrt {-\frac {b}{a}}\, a \,b^{2} c \,d^{2} x^{3}+4 \sqrt {-\frac {b}{a}}\, b^{3} c^{2} d \,x^{3}+9 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b c \,d^{2}-17 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{2} c^{2} d +8 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{3} c^{3}-3 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a^{2} b c \,d^{2}+13 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a \,b^{2} c^{2} d -8 \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b^{3} c^{3}+3 \sqrt {-\frac {b}{a}}\, a^{3} d^{3} x -6 \sqrt {-\frac {b}{a}}\, a^{2} b c \,d^{2} x +4 \sqrt {-\frac {b}{a}}\, a \,b^{2} c^{2} d x \right )}{3 \left (b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c \right ) d^{3} c \sqrt {-\frac {b}{a}}}\) \(539\)
risch \(\frac {b^{2} x \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}{3 d^{2}}+\frac {\left (\frac {b \left (-\frac {\left (7 a b \,d^{2}-5 b^{2} c d \right ) c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}\, d}+\frac {9 a^{2} d^{2} \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}-\frac {10 a b c d \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}+\frac {3 b^{2} c^{2} \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right )}{d}+\frac {3 \left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right ) \left (\frac {\left (b d \,x^{2}+a d \right ) x}{c \left (a d -b c \right ) \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (b d \,x^{2}+a d \right )}}+\frac {\left (\frac {1}{c}-\frac {a d}{c \left (a d -b c \right )}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}+\frac {b \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\left (a d -b c \right ) \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}\right )}{d}\right ) \sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}}{3 d^{2} \sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(816\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/3*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*((-b/a)^(1/2)*b^3*c*d^2*x^5+3*(-b/a)^(1/2)*a^2*b*d^3*x^3-5*(-b/a)^(1/2)*a*
b^2*c*d^2*x^3+4*(-b/a)^(1/2)*b^3*c^2*d*x^3+9*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),
(a*d/b/c)^(1/2))*a^2*b*c*d^2-17*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/
2))*a*b^2*c^2*d+8*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^3*c^3-3*
((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*b*c*d^2+13*((b*x^2+a)/a)
^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^2*c^2*d-8*((b*x^2+a)/a)^(1/2)*((d*x^2
+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^3*c^3+3*(-b/a)^(1/2)*a^3*d^3*x-6*(-b/a)^(1/2)*a^2*b*c
*d^2*x+4*(-b/a)^(1/2)*a*b^2*c^2*d*x)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)/d^3/c/(-b/a)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(5/2)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{2}\right )^{\frac {5}{2}}}{\left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(5/2)/(d*x**2+c)**(3/2),x)

[Out]

Integral((a + b*x**2)**(5/2)/(c + d*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(5/2)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (b\,x^2+a\right )}^{5/2}}{{\left (d\,x^2+c\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^(5/2)/(c + d*x^2)^(3/2),x)

[Out]

int((a + b*x^2)^(5/2)/(c + d*x^2)^(3/2), x)

________________________________________________________________________________________