3.3.7 \(\int \frac {(a+b x^2)^{7/2}}{(c+d x^2)^{3/2}} \, dx\) [207]

Optimal. Leaf size=445 \[ \frac {\left (48 b^3 c^3-128 a b^2 c^2 d+103 a^2 b c d^2-15 a^3 d^3\right ) x \sqrt {a+b x^2}}{15 c d^3 \sqrt {c+d x^2}}-\frac {(b c-a d) x \left (a+b x^2\right )^{5/2}}{c d \sqrt {c+d x^2}}-\frac {b \left (24 b^2 c^2-43 a b c d+15 a^2 d^2\right ) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{15 c d^3}+\frac {b (6 b c-5 a d) x \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{5 c d^2}-\frac {\left (48 b^3 c^3-128 a b^2 c^2 d+103 a^2 b c d^2-15 a^3 d^3\right ) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 \sqrt {c} d^{7/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {b \sqrt {c} \left (24 b^2 c^2-61 a b c d+45 a^2 d^2\right ) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 d^{7/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

-(-a*d+b*c)*x*(b*x^2+a)^(5/2)/c/d/(d*x^2+c)^(1/2)+1/15*(-15*a^3*d^3+103*a^2*b*c*d^2-128*a*b^2*c^2*d+48*b^3*c^3
)*x*(b*x^2+a)^(1/2)/c/d^3/(d*x^2+c)^(1/2)-1/15*(-15*a^3*d^3+103*a^2*b*c*d^2-128*a*b^2*c^2*d+48*b^3*c^3)*(1/(1+
d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(b*x^2+a)^(
1/2)/d^(7/2)/c^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)+1/15*b*(45*a^2*d^2-61*a*b*c*d+24*b^2*c^2)
*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1
/2)*(b*x^2+a)^(1/2)/d^(7/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)+1/5*b*(-5*a*d+6*b*c)*x*(b*x^2+a)^(
3/2)*(d*x^2+c)^(1/2)/c/d^2-1/15*b*(15*a^2*d^2-43*a*b*c*d+24*b^2*c^2)*x*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/c/d^3

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 445, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {424, 542, 545, 429, 506, 422} \begin {gather*} \frac {b \sqrt {c} \sqrt {a+b x^2} \left (45 a^2 d^2-61 a b c d+24 b^2 c^2\right ) F\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 d^{7/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {b x \sqrt {a+b x^2} \sqrt {c+d x^2} \left (15 a^2 d^2-43 a b c d+24 b^2 c^2\right )}{15 c d^3}-\frac {\sqrt {a+b x^2} \left (-15 a^3 d^3+103 a^2 b c d^2-128 a b^2 c^2 d+48 b^3 c^3\right ) E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 \sqrt {c} d^{7/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {x \sqrt {a+b x^2} \left (-15 a^3 d^3+103 a^2 b c d^2-128 a b^2 c^2 d+48 b^3 c^3\right )}{15 c d^3 \sqrt {c+d x^2}}+\frac {b x \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2} (6 b c-5 a d)}{5 c d^2}-\frac {x \left (a+b x^2\right )^{5/2} (b c-a d)}{c d \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(7/2)/(c + d*x^2)^(3/2),x]

[Out]

((48*b^3*c^3 - 128*a*b^2*c^2*d + 103*a^2*b*c*d^2 - 15*a^3*d^3)*x*Sqrt[a + b*x^2])/(15*c*d^3*Sqrt[c + d*x^2]) -
 ((b*c - a*d)*x*(a + b*x^2)^(5/2))/(c*d*Sqrt[c + d*x^2]) - (b*(24*b^2*c^2 - 43*a*b*c*d + 15*a^2*d^2)*x*Sqrt[a
+ b*x^2]*Sqrt[c + d*x^2])/(15*c*d^3) + (b*(6*b*c - 5*a*d)*x*(a + b*x^2)^(3/2)*Sqrt[c + d*x^2])/(5*c*d^2) - ((4
8*b^3*c^3 - 128*a*b^2*c^2*d + 103*a^2*b*c*d^2 - 15*a^3*d^3)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[
c]], 1 - (b*c)/(a*d)])/(15*Sqrt[c]*d^(7/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) + (b*Sqrt[c]
*(24*b^2*c^2 - 61*a*b*c*d + 45*a^2*d^2)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)
])/(15*d^(7/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 424

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a*d - c*b)*x*(a + b*x^n)^(
p + 1)*((c + d*x^n)^(q - 1)/(a*b*n*(p + 1))), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 542

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
f*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(n*(p + q + 1) + 1))), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^{7/2}}{\left (c+d x^2\right )^{3/2}} \, dx &=-\frac {(b c-a d) x \left (a+b x^2\right )^{5/2}}{c d \sqrt {c+d x^2}}+\frac {\int \frac {\left (a+b x^2\right )^{3/2} \left (a b c+b (6 b c-5 a d) x^2\right )}{\sqrt {c+d x^2}} \, dx}{c d}\\ &=-\frac {(b c-a d) x \left (a+b x^2\right )^{5/2}}{c d \sqrt {c+d x^2}}+\frac {b (6 b c-5 a d) x \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{5 c d^2}+\frac {\int \frac {\sqrt {a+b x^2} \left (-2 a b c (3 b c-5 a d)-b \left (24 b^2 c^2-43 a b c d+15 a^2 d^2\right ) x^2\right )}{\sqrt {c+d x^2}} \, dx}{5 c d^2}\\ &=-\frac {(b c-a d) x \left (a+b x^2\right )^{5/2}}{c d \sqrt {c+d x^2}}-\frac {b \left (24 b^2 c^2-43 a b c d+15 a^2 d^2\right ) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{15 c d^3}+\frac {b (6 b c-5 a d) x \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{5 c d^2}+\frac {\int \frac {a b c \left (24 b^2 c^2-61 a b c d+45 a^2 d^2\right )+b \left (48 b^3 c^3-128 a b^2 c^2 d+103 a^2 b c d^2-15 a^3 d^3\right ) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{15 c d^3}\\ &=-\frac {(b c-a d) x \left (a+b x^2\right )^{5/2}}{c d \sqrt {c+d x^2}}-\frac {b \left (24 b^2 c^2-43 a b c d+15 a^2 d^2\right ) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{15 c d^3}+\frac {b (6 b c-5 a d) x \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{5 c d^2}+\frac {\left (a b \left (24 b^2 c^2-61 a b c d+45 a^2 d^2\right )\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{15 d^3}+\frac {\left (b \left (48 b^3 c^3-128 a b^2 c^2 d+103 a^2 b c d^2-15 a^3 d^3\right )\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{15 c d^3}\\ &=\frac {\left (48 b^3 c^3-128 a b^2 c^2 d+103 a^2 b c d^2-15 a^3 d^3\right ) x \sqrt {a+b x^2}}{15 c d^3 \sqrt {c+d x^2}}-\frac {(b c-a d) x \left (a+b x^2\right )^{5/2}}{c d \sqrt {c+d x^2}}-\frac {b \left (24 b^2 c^2-43 a b c d+15 a^2 d^2\right ) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{15 c d^3}+\frac {b (6 b c-5 a d) x \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{5 c d^2}+\frac {b \sqrt {c} \left (24 b^2 c^2-61 a b c d+45 a^2 d^2\right ) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 d^{7/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}-\frac {\left (48 b^3 c^3-128 a b^2 c^2 d+103 a^2 b c d^2-15 a^3 d^3\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{15 d^3}\\ &=\frac {\left (48 b^3 c^3-128 a b^2 c^2 d+103 a^2 b c d^2-15 a^3 d^3\right ) x \sqrt {a+b x^2}}{15 c d^3 \sqrt {c+d x^2}}-\frac {(b c-a d) x \left (a+b x^2\right )^{5/2}}{c d \sqrt {c+d x^2}}-\frac {b \left (24 b^2 c^2-43 a b c d+15 a^2 d^2\right ) x \sqrt {a+b x^2} \sqrt {c+d x^2}}{15 c d^3}+\frac {b (6 b c-5 a d) x \left (a+b x^2\right )^{3/2} \sqrt {c+d x^2}}{5 c d^2}-\frac {\left (48 b^3 c^3-128 a b^2 c^2 d+103 a^2 b c d^2-15 a^3 d^3\right ) \sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 \sqrt {c} d^{7/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}+\frac {b \sqrt {c} \left (24 b^2 c^2-61 a b c d+45 a^2 d^2\right ) \sqrt {a+b x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{15 d^{7/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 5.49, size = 318, normalized size = 0.71 \begin {gather*} \frac {\sqrt {\frac {b}{a}} d x \left (a+b x^2\right ) \left (-45 a^2 b c d^2+15 a^3 d^3+a b^2 c d \left (61 c+16 d x^2\right )-3 b^3 c \left (8 c^2+2 c d x^2-d^2 x^4\right )\right )+i b c \left (-48 b^3 c^3+128 a b^2 c^2 d-103 a^2 b c d^2+15 a^3 d^3\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+4 i b c \left (12 b^3 c^3-38 a b^2 c^2 d+41 a^2 b c d^2-15 a^3 d^3\right ) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{15 \sqrt {\frac {b}{a}} c d^4 \sqrt {a+b x^2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(7/2)/(c + d*x^2)^(3/2),x]

[Out]

(Sqrt[b/a]*d*x*(a + b*x^2)*(-45*a^2*b*c*d^2 + 15*a^3*d^3 + a*b^2*c*d*(61*c + 16*d*x^2) - 3*b^3*c*(8*c^2 + 2*c*
d*x^2 - d^2*x^4)) + I*b*c*(-48*b^3*c^3 + 128*a*b^2*c^2*d - 103*a^2*b*c*d^2 + 15*a^3*d^3)*Sqrt[1 + (b*x^2)/a]*S
qrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + (4*I)*b*c*(12*b^3*c^3 - 38*a*b^2*c^2*d + 4
1*a^2*b*c*d^2 - 15*a^3*d^3)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b
*c)])/(15*Sqrt[b/a]*c*d^4*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 755, normalized size = 1.70 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(7/2)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/15*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*(3*(-b/a)^(1/2)*b^4*c*d^3*x^7+19*(-b/a)^(1/2)*a*b^3*c*d^3*x^5-6*(-b/a)^(1
/2)*b^4*c^2*d^2*x^5+15*(-b/a)^(1/2)*a^3*b*d^4*x^3-29*(-b/a)^(1/2)*a^2*b^2*c*d^3*x^3+55*(-b/a)^(1/2)*a*b^3*c^2*
d^2*x^3-24*(-b/a)^(1/2)*b^4*c^3*d*x^3+60*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d
/b/c)^(1/2))*a^3*b*c*d^3-164*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))
*a^2*b^2*c^2*d^2+152*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^3*c
^3*d-48*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^4*c^4-15*((b*x^2+a
)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^3*b*c*d^3+103*((b*x^2+a)/a)^(1/2)*(
(d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*b^2*c^2*d^2-128*((b*x^2+a)/a)^(1/2)*((d*x^2+c
)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^3*c^3*d+48*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*El
lipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^4*c^4+15*(-b/a)^(1/2)*a^4*d^4*x-45*(-b/a)^(1/2)*a^3*b*c*d^3*x+61*(-b
/a)^(1/2)*a^2*b^2*c^2*d^2*x-24*(-b/a)^(1/2)*a*b^3*c^3*d*x)/d^4/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)/(-b/a)^(1/2)/c

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(7/2)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(7/2)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(7/2)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{2}\right )^{\frac {7}{2}}}{\left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(7/2)/(d*x**2+c)**(3/2),x)

[Out]

Integral((a + b*x**2)**(7/2)/(c + d*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(7/2)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(7/2)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (b\,x^2+a\right )}^{7/2}}{{\left (d\,x^2+c\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^(7/2)/(c + d*x^2)^(3/2),x)

[Out]

int((a + b*x^2)^(7/2)/(c + d*x^2)^(3/2), x)

________________________________________________________________________________________