3.512 \(\int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx\)

Optimal. Leaf size=125 \[ \frac {2 a c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{3 \left (c-\frac {c}{a x}\right )^{3/2}}+\frac {4 a c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}-4 \sqrt {2} a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {2} \sqrt {c-\frac {c}{a x}}}\right ) \]

[Out]

2/3*a*c^2*(1-1/a^2/x^2)^(3/2)/(c-c/a/x)^(3/2)-4*a*arctanh(1/2*c^(1/2)*(1-1/a^2/x^2)^(1/2)*2^(1/2)/(c-c/a/x)^(1
/2))*2^(1/2)*c^(1/2)+4*a*c*(1-1/a^2/x^2)^(1/2)/(c-c/a/x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {6178, 665, 661, 208} \[ \frac {2 a c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{3 \left (c-\frac {c}{a x}\right )^{3/2}}+\frac {4 a c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}-4 \sqrt {2} a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {2} \sqrt {c-\frac {c}{a x}}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(E^(3*ArcCoth[a*x])*Sqrt[c - c/(a*x)])/x^2,x]

[Out]

(2*a*c^2*(1 - 1/(a^2*x^2))^(3/2))/(3*(c - c/(a*x))^(3/2)) + (4*a*c*Sqrt[1 - 1/(a^2*x^2)])/Sqrt[c - c/(a*x)] -
4*Sqrt[2]*a*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)])/(Sqrt[2]*Sqrt[c - c/(a*x)])]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 661

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(2*c*d + e^2*x^2
), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0]

Rule 665

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 2*p + 1)), x] - Dist[(2*c*d*p)/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1), x], x] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[
m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 6178

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c
+ d*x)^(p - n)*(1 - x^2/a^2)^(n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx &=-\left (c^3 \operatorname {Subst}\left (\int \frac {\left (1-\frac {x^2}{a^2}\right )^{3/2}}{\left (c-\frac {c x}{a}\right )^{5/2}} \, dx,x,\frac {1}{x}\right )\right )\\ &=\frac {2 a c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{3 \left (c-\frac {c}{a x}\right )^{3/2}}-\left (2 c^2\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {x^2}{a^2}}}{\left (c-\frac {c x}{a}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {2 a c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{3 \left (c-\frac {c}{a x}\right )^{3/2}}+\frac {4 a c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}-(4 c) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c-\frac {c x}{a}} \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {2 a c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{3 \left (c-\frac {c}{a x}\right )^{3/2}}+\frac {4 a c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}+\frac {\left (8 c^2\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {2 c}{a^2}+\frac {c^2 x^2}{a^2}} \, dx,x,\frac {\sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right )}{a}\\ &=\frac {2 a c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{3 \left (c-\frac {c}{a x}\right )^{3/2}}+\frac {4 a c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}-4 \sqrt {2} a \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {2} \sqrt {c-\frac {c}{a x}}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 155, normalized size = 1.24 \[ \frac {2 a \left (\sqrt {1-\frac {1}{a^2 x^2}} (7 a x+1) \sqrt {c-\frac {c}{a x}}-3 \sqrt {2} \sqrt {c} (a x-1) \log \left (2 \sqrt {2} a^2 \sqrt {c} x^2 \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}}+c \left (3 a^2 x^2-2 a x-1\right )\right )+3 \sqrt {2} \sqrt {c} (a x-1) \log \left ((a x-1)^2\right )\right )}{3 a x-3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(E^(3*ArcCoth[a*x])*Sqrt[c - c/(a*x)])/x^2,x]

[Out]

(2*a*(Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*(1 + 7*a*x) + 3*Sqrt[2]*Sqrt[c]*(-1 + a*x)*Log[(-1 + a*x)^2] - 3
*Sqrt[2]*Sqrt[c]*(-1 + a*x)*Log[2*Sqrt[2]*a^2*Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*x^2 + c*(-1 - 2*
a*x + 3*a^2*x^2)]))/(-3 + 3*a*x)

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 353, normalized size = 2.82 \[ \left [\frac {3 \, \sqrt {2} {\left (a^{2} x^{2} - a x\right )} \sqrt {c} \log \left (-\frac {17 \, a^{3} c x^{3} - 3 \, a^{2} c x^{2} - 13 \, a c x - 4 \, \sqrt {2} {\left (3 \, a^{3} x^{3} + 4 \, a^{2} x^{2} + a x\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}} - c}{a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1}\right ) + 2 \, {\left (7 \, a^{2} x^{2} + 8 \, a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{3 \, {\left (a x^{2} - x\right )}}, \frac {2 \, {\left (3 \, \sqrt {2} {\left (a^{2} x^{2} - a x\right )} \sqrt {-c} \arctan \left (\frac {2 \, \sqrt {2} {\left (a^{2} x^{2} + a x\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{3 \, a^{2} c x^{2} - 2 \, a c x - c}\right ) + {\left (7 \, a^{2} x^{2} + 8 \, a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}\right )}}{3 \, {\left (a x^{2} - x\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/3*(3*sqrt(2)*(a^2*x^2 - a*x)*sqrt(c)*log(-(17*a^3*c*x^3 - 3*a^2*c*x^2 - 13*a*c*x - 4*sqrt(2)*(3*a^3*x^3 + 4
*a^2*x^2 + a*x)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)) - c)/(a^3*x^3 - 3*a^2*x^2 + 3*a*x -
1)) + 2*(7*a^2*x^2 + 8*a*x + 1)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)))/(a*x^2 - x), 2/3*(3*sqrt(2)
*(a^2*x^2 - a*x)*sqrt(-c)*arctan(2*sqrt(2)*(a^2*x^2 + a*x)*sqrt(-c)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)
/(a*x))/(3*a^2*c*x^2 - 2*a*c*x - c)) + (7*a^2*x^2 + 8*a*x + 1)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x
)))/(a*x^2 - x)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2)/x^2,x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Warning, integrat
ion of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(a*x+1)]sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.08, size = 141, normalized size = 1.13 \[ -\frac {2 \left (a x -1\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (3 a \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {1}{a}}\, \sqrt {\left (a x +1\right ) x}\, a +3 a x +1}{a x -1}\right ) x^{2}-7 a \sqrt {\frac {1}{a}}\, x \sqrt {\left (a x +1\right ) x}-\sqrt {\frac {1}{a}}\, \sqrt {\left (a x +1\right ) x}\right )}{3 \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right ) x \sqrt {\left (a x +1\right ) x}\, \sqrt {\frac {1}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2)/x^2,x)

[Out]

-2/3/((a*x-1)/(a*x+1))^(3/2)*(a*x-1)/(a*x+1)*(c*(a*x-1)/a/x)^(1/2)/x*(3*a*2^(1/2)*ln((2*2^(1/2)*(1/a)^(1/2)*((
a*x+1)*x)^(1/2)*a+3*a*x+1)/(a*x-1))*x^2-7*a*(1/a)^(1/2)*x*((a*x+1)*x)^(1/2)-(1/a)^(1/2)*((a*x+1)*x)^(1/2))/((a
*x+1)*x)^(1/2)/(1/a)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c - \frac {c}{a x}}}{x^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a*x))/(x^2*((a*x - 1)/(a*x + 1))^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {c-\frac {c}{a\,x}}}{x^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c/(a*x))^(1/2)/(x^2*((a*x - 1)/(a*x + 1))^(3/2)),x)

[Out]

int((c - c/(a*x))^(1/2)/(x^2*((a*x - 1)/(a*x + 1))^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(c-c/a/x)**(1/2)/x**2,x)

[Out]

Timed out

________________________________________________________________________________________