3.494 \(\int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx\)

Optimal. Leaf size=37 \[ -\frac {2 a c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{3 \left (c-\frac {c}{a x}\right )^{3/2}} \]

[Out]

-2/3*a*c^2*(1-1/a^2/x^2)^(3/2)/(c-c/a/x)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {6178, 649} \[ -\frac {2 a c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{3 \left (c-\frac {c}{a x}\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcCoth[a*x]*Sqrt[c - c/(a*x)])/x^2,x]

[Out]

(-2*a*c^2*(1 - 1/(a^2*x^2))^(3/2))/(3*(c - c/(a*x))^(3/2))

Rule 649

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)*(a + c*x^2)^(p
 + 1))/(c*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p,
 0]

Rule 6178

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c
+ d*x)^(p - n)*(1 - x^2/a^2)^(n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx &=-\left (c \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {x^2}{a^2}}}{\sqrt {c-\frac {c x}{a}}} \, dx,x,\frac {1}{x}\right )\right )\\ &=-\frac {2 a c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}{3 \left (c-\frac {c}{a x}\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 45, normalized size = 1.22 \[ -\frac {2 a \sqrt {1-\frac {1}{a^2 x^2}} (a x+1) \sqrt {c-\frac {c}{a x}}}{3 a x-3} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^ArcCoth[a*x]*Sqrt[c - c/(a*x)])/x^2,x]

[Out]

(-2*a*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*(1 + a*x))/(-3 + 3*a*x)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 58, normalized size = 1.57 \[ -\frac {2 \, {\left (a^{2} x^{2} + 2 \, a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{3 \, {\left (a x^{2} - x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x^2,x, algorithm="fricas")

[Out]

-2/3*(a^2*x^2 + 2*a*x + 1)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x))/(a*x^2 - x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(x)]Warning, choosing root of [1,0,%%%{-2,[2,1,2]%%%}+%%%{-2,[2,0,2]%%%}+%%%{2,[1,1,1]%%%}+%%%{2,[0,0,0]%%%},
0,%%%{1,[4,2,4]%%%}+%%%{-2,[4,1,4]%%%}+%%%{1,[4,0,4]%%%}+%%%{-2,[3,2,3]%%%}+%%%{2,[3,1,3]%%%}+%%%{1,[2,2,2]%%%
}+%%%{2,[2,1,2]%%%}+%%%{-2,[2,0,2]%%%}+%%%{-2,[1,1,1]%%%}+%%%{1,[0,0,0]%%%}] at parameters values [86,-97,-82]
Warning, choosing root of [1,0,%%%{-2,[2,1,2]%%%}+%%%{-2,[2,0,2]%%%}+%%%{-2,[1,1,1]%%%}+%%%{2,[0,0,0]%%%},0,%%
%{1,[4,2,4]%%%}+%%%{-2,[4,1,4]%%%}+%%%{1,[4,0,4]%%%}+%%%{2,[3,2,3]%%%}+%%%{-2,[3,1,3]%%%}+%%%{1,[2,2,2]%%%}+%%
%{2,[2,1,2]%%%}+%%%{-2,[2,0,2]%%%}+%%%{2,[1,1,1]%%%}+%%%{1,[0,0,0]%%%}] at parameters values [7,-27,26]Warning
, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(a
*t_nostep+1)]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.04, size = 41, normalized size = 1.11 \[ -\frac {2 \left (a x +1\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}}{3 x \sqrt {\frac {a x -1}{a x +1}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x^2,x)

[Out]

-2/3*(a*x+1)/x/((a*x-1)/(a*x+1))^(1/2)*(c*(a*x-1)/a/x)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c - \frac {c}{a x}}}{x^{2} \sqrt {\frac {a x - 1}{a x + 1}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a*x))/(x^2*sqrt((a*x - 1)/(a*x + 1))), x)

________________________________________________________________________________________

mupad [B]  time = 1.37, size = 47, normalized size = 1.27 \[ -\frac {2\,\sqrt {c-\frac {c}{a\,x}}\,{\left (a\,x+1\right )}^2\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{3\,x\,\left (a\,x-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c/(a*x))^(1/2)/(x^2*((a*x - 1)/(a*x + 1))^(1/2)),x)

[Out]

-(2*(c - c/(a*x))^(1/2)*(a*x + 1)^2*((a*x - 1)/(a*x + 1))^(1/2))/(3*x*(a*x - 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(c-c/a/x)**(1/2)/x**2,x)

[Out]

Timed out

________________________________________________________________________________________