3.385 \(\int \frac {e^{\coth ^{-1}(a x)}}{(c-\frac {c}{a x})^3} \, dx\)

Optimal. Leaf size=138 \[ -\frac {8 \left (a+\frac {1}{x}\right )}{5 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {4 \left (5 a+\frac {8}{x}\right )}{15 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {60 a+\frac {79}{x}}{15 a^2 c^3 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {x \sqrt {1-\frac {1}{a^2 x^2}}}{c^3}+\frac {4 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^3} \]

[Out]

-8/5*(a+1/x)/a^2/c^3/(1-1/a^2/x^2)^(5/2)-4/15*(5*a+8/x)/a^2/c^3/(1-1/a^2/x^2)^(3/2)+4*arctanh((1-1/a^2/x^2)^(1
/2))/a/c^3+1/15*(-60*a-79/x)/a^2/c^3/(1-1/a^2/x^2)^(1/2)+x*(1-1/a^2/x^2)^(1/2)/c^3

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {6177, 852, 1805, 807, 266, 63, 208} \[ -\frac {8 \left (a+\frac {1}{x}\right )}{5 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {4 \left (5 a+\frac {8}{x}\right )}{15 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {60 a+\frac {79}{x}}{15 a^2 c^3 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {x \sqrt {1-\frac {1}{a^2 x^2}}}{c^3}+\frac {4 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^3} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]/(c - c/(a*x))^3,x]

[Out]

(-8*(a + x^(-1)))/(5*a^2*c^3*(1 - 1/(a^2*x^2))^(5/2)) - (4*(5*a + 8/x))/(15*a^2*c^3*(1 - 1/(a^2*x^2))^(3/2)) -
 (60*a + 79/x)/(15*a^2*c^3*Sqrt[1 - 1/(a^2*x^2)]) + (Sqrt[1 - 1/(a^2*x^2)]*x)/c^3 + (4*ArcTanh[Sqrt[1 - 1/(a^2
*x^2)]])/(a*c^3)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 852

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[((f + g*x)^n*(a + c*x^2)^(m + p))/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1805

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[((a*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rule 6177

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c + d*x)^(p -
 n)*(1 - x^2/a^2)^(n/2))/x^2, x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)
/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^3} \, dx &=-\left (c \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {x^2}{a^2}}}{x^2 \left (c-\frac {c x}{a}\right )^4} \, dx,x,\frac {1}{x}\right )\right )\\ &=-\frac {\operatorname {Subst}\left (\int \frac {\left (c+\frac {c x}{a}\right )^4}{x^2 \left (1-\frac {x^2}{a^2}\right )^{7/2}} \, dx,x,\frac {1}{x}\right )}{c^7}\\ &=-\frac {8 \left (a+\frac {1}{x}\right )}{5 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}+\frac {\operatorname {Subst}\left (\int \frac {-5 c^4-\frac {20 c^4 x}{a}-\frac {27 c^4 x^2}{a^2}}{x^2 \left (1-\frac {x^2}{a^2}\right )^{5/2}} \, dx,x,\frac {1}{x}\right )}{5 c^7}\\ &=-\frac {8 \left (a+\frac {1}{x}\right )}{5 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {4 \left (5 a+\frac {8}{x}\right )}{15 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {\operatorname {Subst}\left (\int \frac {15 c^4+\frac {60 c^4 x}{a}+\frac {64 c^4 x^2}{a^2}}{x^2 \left (1-\frac {x^2}{a^2}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{15 c^7}\\ &=-\frac {8 \left (a+\frac {1}{x}\right )}{5 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {4 \left (5 a+\frac {8}{x}\right )}{15 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {60 a+\frac {79}{x}}{15 a^2 c^3 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\operatorname {Subst}\left (\int \frac {-15 c^4-\frac {60 c^4 x}{a}}{x^2 \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{15 c^7}\\ &=-\frac {8 \left (a+\frac {1}{x}\right )}{5 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {4 \left (5 a+\frac {8}{x}\right )}{15 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {60 a+\frac {79}{x}}{15 a^2 c^3 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^3}-\frac {4 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a c^3}\\ &=-\frac {8 \left (a+\frac {1}{x}\right )}{5 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {4 \left (5 a+\frac {8}{x}\right )}{15 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {60 a+\frac {79}{x}}{15 a^2 c^3 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^3}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{a c^3}\\ &=-\frac {8 \left (a+\frac {1}{x}\right )}{5 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {4 \left (5 a+\frac {8}{x}\right )}{15 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {60 a+\frac {79}{x}}{15 a^2 c^3 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^3}+\frac {(4 a) \operatorname {Subst}\left (\int \frac {1}{a^2-a^2 x^2} \, dx,x,\sqrt {1-\frac {1}{a^2 x^2}}\right )}{c^3}\\ &=-\frac {8 \left (a+\frac {1}{x}\right )}{5 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{5/2}}-\frac {4 \left (5 a+\frac {8}{x}\right )}{15 a^2 c^3 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {60 a+\frac {79}{x}}{15 a^2 c^3 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^3}+\frac {4 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 104, normalized size = 0.75 \[ \frac {15 a^4 x^4-134 a^3 x^3+73 a^2 x^2+60 a x \sqrt {1-\frac {1}{a^2 x^2}} (a x-1)^2 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )+128 a x-94}{15 a^2 c^3 x \sqrt {1-\frac {1}{a^2 x^2}} (a x-1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcCoth[a*x]/(c - c/(a*x))^3,x]

[Out]

(-94 + 128*a*x + 73*a^2*x^2 - 134*a^3*x^3 + 15*a^4*x^4 + 60*a*Sqrt[1 - 1/(a^2*x^2)]*x*(-1 + a*x)^2*ArcTanh[Sqr
t[1 - 1/(a^2*x^2)]])/(15*a^2*c^3*Sqrt[1 - 1/(a^2*x^2)]*x*(-1 + a*x)^2)

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 170, normalized size = 1.23 \[ \frac {60 \, {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - 60 \, {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) + {\left (15 \, a^{4} x^{4} - 134 \, a^{3} x^{3} + 73 \, a^{2} x^{2} + 128 \, a x - 94\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{15 \, {\left (a^{4} c^{3} x^{3} - 3 \, a^{3} c^{3} x^{2} + 3 \, a^{2} c^{3} x - a c^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^3,x, algorithm="fricas")

[Out]

1/15*(60*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 60*(a^3*x^3 - 3*a^2*x^2 + 3*a*
x - 1)*log(sqrt((a*x - 1)/(a*x + 1)) - 1) + (15*a^4*x^4 - 134*a^3*x^3 + 73*a^2*x^2 + 128*a*x - 94)*sqrt((a*x -
 1)/(a*x + 1)))/(a^4*c^3*x^3 - 3*a^3*c^3*x^2 + 3*a^2*c^3*x - a*c^3)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 166, normalized size = 1.20 \[ \frac {1}{30} \, a {\left (\frac {120 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c^{3}} - \frac {120 \, \log \left ({\left | \sqrt {\frac {a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2} c^{3}} - \frac {{\left (a x + 1\right )}^{2} {\left (\frac {25 \, {\left (a x - 1\right )}}{a x + 1} + \frac {180 \, {\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} + 3\right )}}{{\left (a x - 1\right )}^{2} a^{2} c^{3} \sqrt {\frac {a x - 1}{a x + 1}}} - \frac {60 \, \sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} c^{3} {\left (\frac {a x - 1}{a x + 1} - 1\right )}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^3,x, algorithm="giac")

[Out]

1/30*a*(120*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c^3) - 120*log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/(a^2*c^
3) - (a*x + 1)^2*(25*(a*x - 1)/(a*x + 1) + 180*(a*x - 1)^2/(a*x + 1)^2 + 3)/((a*x - 1)^2*a^2*c^3*sqrt((a*x - 1
)/(a*x + 1))) - 60*sqrt((a*x - 1)/(a*x + 1))/(a^2*c^3*((a*x - 1)/(a*x + 1) - 1)))

________________________________________________________________________________________

maple [B]  time = 0.06, size = 431, normalized size = 3.12 \[ \frac {60 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x^{4} a^{5}+60 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, x^{4} a^{4}-240 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x^{3} a^{4}-45 \sqrt {a^{2}}\, \left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} x^{2} a^{2}-240 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, x^{3} a^{3}+360 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x^{2} a^{3}+76 \sqrt {a^{2}}\, \left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} x a +360 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}\, x^{2} a^{2}-240 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x \,a^{2}-34 \left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}-240 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}\, x a +60 a \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right )+60 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{15 a \left (a x -1\right )^{3} \sqrt {a^{2}}\, c^{3} \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {\frac {a x -1}{a x +1}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^3,x)

[Out]

1/15*(60*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x^4*a^5+60*(a^2)^(1/2)*((a*x-1)*(a*x+1))^
(1/2)*x^4*a^4-240*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x^3*a^4-45*(a^2)^(1/2)*((a*x-1)*
(a*x+1))^(3/2)*x^2*a^2-240*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*x^3*a^3+360*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(
a^2)^(1/2))/(a^2)^(1/2))*x^2*a^3+76*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(3/2)*x*a+360*((a*x-1)*(a*x+1))^(1/2)*(a^2)^
(1/2)*x^2*a^2-240*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x*a^2-34*((a*x-1)*(a*x+1))^(3/2)
*(a^2)^(1/2)-240*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2)*x*a+60*a*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(
a^2)^(1/2))+60*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/a/(a*x-1)^3/(a^2)^(1/2)/c^3/((a*x-1)*(a*x+1))^(1/2)/((a*x-
1)/(a*x+1))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 153, normalized size = 1.11 \[ \frac {1}{30} \, a {\left (\frac {\frac {22 \, {\left (a x - 1\right )}}{a x + 1} + \frac {155 \, {\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} - \frac {240 \, {\left (a x - 1\right )}^{3}}{{\left (a x + 1\right )}^{3}} + 3}{a^{2} c^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {7}{2}} - a^{2} c^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{2}}} + \frac {120 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c^{3}} - \frac {120 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2} c^{3}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^3,x, algorithm="maxima")

[Out]

1/30*a*((22*(a*x - 1)/(a*x + 1) + 155*(a*x - 1)^2/(a*x + 1)^2 - 240*(a*x - 1)^3/(a*x + 1)^3 + 3)/(a^2*c^3*((a*
x - 1)/(a*x + 1))^(7/2) - a^2*c^3*((a*x - 1)/(a*x + 1))^(5/2)) + 120*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c
^3) - 120*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/(a^2*c^3))

________________________________________________________________________________________

mupad [B]  time = 1.22, size = 121, normalized size = 0.88 \[ \frac {8\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a\,c^3}-\frac {\frac {31\,{\left (a\,x-1\right )}^2}{3\,{\left (a\,x+1\right )}^2}-\frac {16\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}+\frac {22\,\left (a\,x-1\right )}{15\,\left (a\,x+1\right )}+\frac {1}{5}}{2\,a\,c^3\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/2}-2\,a\,c^3\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{7/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((c - c/(a*x))^3*((a*x - 1)/(a*x + 1))^(1/2)),x)

[Out]

(8*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/(a*c^3) - ((31*(a*x - 1)^2)/(3*(a*x + 1)^2) - (16*(a*x - 1)^3)/(a*x + 1
)^3 + (22*(a*x - 1))/(15*(a*x + 1)) + 1/5)/(2*a*c^3*((a*x - 1)/(a*x + 1))^(5/2) - 2*a*c^3*((a*x - 1)/(a*x + 1)
)^(7/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {a^{3} \int \frac {x^{3}}{a^{3} x^{3} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}} - 3 a^{2} x^{2} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}} + 3 a x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}} - \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\, dx}{c^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)/(c-c/a/x)**3,x)

[Out]

a**3*Integral(x**3/(a**3*x**3*sqrt(a*x/(a*x + 1) - 1/(a*x + 1)) - 3*a**2*x**2*sqrt(a*x/(a*x + 1) - 1/(a*x + 1)
) + 3*a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1)) - sqrt(a*x/(a*x + 1) - 1/(a*x + 1))), x)/c**3

________________________________________________________________________________________