3.384 \(\int \frac {e^{\coth ^{-1}(a x)}}{(c-\frac {c}{a x})^2} \, dx\)

Optimal. Leaf size=105 \[ -\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {x \sqrt {1-\frac {1}{a^2 x^2}}}{c^2}+\frac {3 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^2} \]

[Out]

-4/3*(a+1/x)/a^2/c^2/(1-1/a^2/x^2)^(3/2)+3*arctanh((1-1/a^2/x^2)^(1/2))/a/c^2+1/3*(-9*a-11/x)/a^2/c^2/(1-1/a^2
/x^2)^(1/2)+x*(1-1/a^2/x^2)^(1/2)/c^2

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {6177, 852, 1805, 807, 266, 63, 208} \[ -\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {x \sqrt {1-\frac {1}{a^2 x^2}}}{c^2}+\frac {3 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^2} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]/(c - c/(a*x))^2,x]

[Out]

(-4*(a + x^(-1)))/(3*a^2*c^2*(1 - 1/(a^2*x^2))^(3/2)) - (9*a + 11/x)/(3*a^2*c^2*Sqrt[1 - 1/(a^2*x^2)]) + (Sqrt
[1 - 1/(a^2*x^2)]*x)/c^2 + (3*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/(a*c^2)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 852

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[((f + g*x)^n*(a + c*x^2)^(m + p))/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1805

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[((a*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rule 6177

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c + d*x)^(p -
 n)*(1 - x^2/a^2)^(n/2))/x^2, x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)
/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx &=-\left (c \operatorname {Subst}\left (\int \frac {\sqrt {1-\frac {x^2}{a^2}}}{x^2 \left (c-\frac {c x}{a}\right )^3} \, dx,x,\frac {1}{x}\right )\right )\\ &=-\frac {\operatorname {Subst}\left (\int \frac {\left (c+\frac {c x}{a}\right )^3}{x^2 \left (1-\frac {x^2}{a^2}\right )^{5/2}} \, dx,x,\frac {1}{x}\right )}{c^5}\\ &=-\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}+\frac {\operatorname {Subst}\left (\int \frac {-3 c^3-\frac {9 c^3 x}{a}-\frac {8 c^3 x^2}{a^2}}{x^2 \left (1-\frac {x^2}{a^2}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{3 c^5}\\ &=-\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {\operatorname {Subst}\left (\int \frac {3 c^3+\frac {9 c^3 x}{a}}{x^2 \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{3 c^5}\\ &=-\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a c^2}\\ &=-\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{2 a c^2}\\ &=-\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}+\frac {(3 a) \operatorname {Subst}\left (\int \frac {1}{a^2-a^2 x^2} \, dx,x,\sqrt {1-\frac {1}{a^2 x^2}}\right )}{c^2}\\ &=-\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}+\frac {3 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 94, normalized size = 0.90 \[ \frac {3 a^3 x^3-16 a^2 x^2+9 a x \sqrt {1-\frac {1}{a^2 x^2}} (a x-1) \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )-5 a x+14}{3 a^2 c^2 x \sqrt {1-\frac {1}{a^2 x^2}} (a x-1)} \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcCoth[a*x]/(c - c/(a*x))^2,x]

[Out]

(14 - 5*a*x - 16*a^2*x^2 + 3*a^3*x^3 + 9*a*Sqrt[1 - 1/(a^2*x^2)]*x*(-1 + a*x)*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/
(3*a^2*c^2*Sqrt[1 - 1/(a^2*x^2)]*x*(-1 + a*x))

________________________________________________________________________________________

fricas [A]  time = 0.73, size = 134, normalized size = 1.28 \[ \frac {9 \, {\left (a^{2} x^{2} - 2 \, a x + 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - 9 \, {\left (a^{2} x^{2} - 2 \, a x + 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) + {\left (3 \, a^{3} x^{3} - 16 \, a^{2} x^{2} - 5 \, a x + 14\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{3 \, {\left (a^{3} c^{2} x^{2} - 2 \, a^{2} c^{2} x + a c^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^2,x, algorithm="fricas")

[Out]

1/3*(9*(a^2*x^2 - 2*a*x + 1)*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 9*(a^2*x^2 - 2*a*x + 1)*log(sqrt((a*x - 1)/(
a*x + 1)) - 1) + (3*a^3*x^3 - 16*a^2*x^2 - 5*a*x + 14)*sqrt((a*x - 1)/(a*x + 1)))/(a^3*c^2*x^2 - 2*a^2*c^2*x +
 a*c^2)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 148, normalized size = 1.41 \[ \frac {1}{3} \, a {\left (\frac {9 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c^{2}} - \frac {9 \, \log \left ({\left | \sqrt {\frac {a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2} c^{2}} - \frac {{\left (a x + 1\right )} {\left (\frac {12 \, {\left (a x - 1\right )}}{a x + 1} + 1\right )}}{{\left (a x - 1\right )} a^{2} c^{2} \sqrt {\frac {a x - 1}{a x + 1}}} - \frac {6 \, \sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} c^{2} {\left (\frac {a x - 1}{a x + 1} - 1\right )}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^2,x, algorithm="giac")

[Out]

1/3*a*(9*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c^2) - 9*log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/(a^2*c^2) -
(a*x + 1)*(12*(a*x - 1)/(a*x + 1) + 1)/((a*x - 1)*a^2*c^2*sqrt((a*x - 1)/(a*x + 1))) - 6*sqrt((a*x - 1)/(a*x +
 1))/(a^2*c^2*((a*x - 1)/(a*x + 1) - 1)))

________________________________________________________________________________________

maple [B]  time = 0.06, size = 339, normalized size = 3.23 \[ \frac {9 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x^{3} a^{4}+9 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, x^{3} a^{3}-27 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x^{2} a^{3}-6 \sqrt {a^{2}}\, \left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} x a -27 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}\, x^{2} a^{2}+27 \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) x \,a^{2}+5 \left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}+27 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}\, x a -9 a \ln \left (\frac {a^{2} x +\sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right )-9 \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {a^{2}}}{3 a \left (a x -1\right )^{2} \sqrt {a^{2}}\, c^{2} \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {\frac {a x -1}{a x +1}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^2,x)

[Out]

1/3*(9*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x^3*a^4+9*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/
2)*x^3*a^3-27*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x^2*a^3-6*(a^2)^(1/2)*((a*x-1)*(a*x+
1))^(3/2)*x*a-27*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2)*x^2*a^2+27*ln((a^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))
/(a^2)^(1/2))*x*a^2+5*((a*x-1)*(a*x+1))^(3/2)*(a^2)^(1/2)+27*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2)*x*a-9*a*ln((a
^2*x+((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))-9*((a*x-1)*(a*x+1))^(1/2)*(a^2)^(1/2))/a/(a*x-1)^2/(a^2
)^(1/2)/c^2/((a*x-1)*(a*x+1))^(1/2)/((a*x-1)/(a*x+1))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 137, normalized size = 1.30 \[ \frac {1}{3} \, a {\left (\frac {\frac {11 \, {\left (a x - 1\right )}}{a x + 1} - \frac {18 \, {\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} + 1}{a^{2} c^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{2}} - a^{2} c^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} + \frac {9 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c^{2}} - \frac {9 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2} c^{2}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^2,x, algorithm="maxima")

[Out]

1/3*a*((11*(a*x - 1)/(a*x + 1) - 18*(a*x - 1)^2/(a*x + 1)^2 + 1)/(a^2*c^2*((a*x - 1)/(a*x + 1))^(5/2) - a^2*c^
2*((a*x - 1)/(a*x + 1))^(3/2)) + 9*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c^2) - 9*log(sqrt((a*x - 1)/(a*x +
1)) - 1)/(a^2*c^2))

________________________________________________________________________________________

mupad [B]  time = 0.10, size = 104, normalized size = 0.99 \[ \frac {6\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a\,c^2}-\frac {\frac {11\,\left (a\,x-1\right )}{3\,\left (a\,x+1\right )}-\frac {6\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}+\frac {1}{3}}{a\,c^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}-a\,c^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((c - c/(a*x))^2*((a*x - 1)/(a*x + 1))^(1/2)),x)

[Out]

(6*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/(a*c^2) - ((11*(a*x - 1))/(3*(a*x + 1)) - (6*(a*x - 1)^2)/(a*x + 1)^2 +
 1/3)/(a*c^2*((a*x - 1)/(a*x + 1))^(3/2) - a*c^2*((a*x - 1)/(a*x + 1))^(5/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {a^{2} \int \frac {x^{2}}{a^{2} x^{2} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}} - 2 a x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}} + \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\, dx}{c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)/(c-c/a/x)**2,x)

[Out]

a**2*Integral(x**2/(a**2*x**2*sqrt(a*x/(a*x + 1) - 1/(a*x + 1)) - 2*a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1)) + sq
rt(a*x/(a*x + 1) - 1/(a*x + 1))), x)/c**2

________________________________________________________________________________________