3.165 \(\int \frac {1}{x^3 \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx\)

Optimal. Leaf size=224 \[ \frac {35 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {35 b^2}{12 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {7 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {5 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{7/2}}+\frac {35 b^2 \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{9/2}}-\frac {1}{2 x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {5 b}{4 x \tanh ^{-1}(\tanh (a+b x))^{7/2}} \]

[Out]

35/4*b^2*arctan(arctanh(tanh(b*x+a))^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))/(b*x-arctanh(tanh(b*x+a)))^(9/2)+
5/4*b/x/arctanh(tanh(b*x+a))^(7/2)-5/4*b^2/(b*x-arctanh(tanh(b*x+a)))/arctanh(tanh(b*x+a))^(7/2)-1/2/x^2/arcta
nh(tanh(b*x+a))^(5/2)+7/4*b^2/(b*x-arctanh(tanh(b*x+a)))^2/arctanh(tanh(b*x+a))^(5/2)-35/12*b^2/(b*x-arctanh(t
anh(b*x+a)))^3/arctanh(tanh(b*x+a))^(3/2)+35/4*b^2/(b*x-arctanh(tanh(b*x+a)))^4/arctanh(tanh(b*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 224, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2168, 2163, 2161} \[ \frac {35 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {35 b^2}{12 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {7 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {5 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{7/2}}+\frac {35 b^2 \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{9/2}}-\frac {1}{2 x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {5 b}{4 x \tanh ^{-1}(\tanh (a+b x))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*ArcTanh[Tanh[a + b*x]]^(5/2)),x]

[Out]

(35*b^2*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(4*(b*x - ArcTanh[Tanh[a + b*
x]])^(9/2)) + (5*b)/(4*x*ArcTanh[Tanh[a + b*x]]^(7/2)) - (5*b^2)/(4*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tan
h[a + b*x]]^(7/2)) - 1/(2*x^2*ArcTanh[Tanh[a + b*x]]^(5/2)) + (7*b^2)/(4*(b*x - ArcTanh[Tanh[a + b*x]])^2*ArcT
anh[Tanh[a + b*x]]^(5/2)) - (35*b^2)/(12*(b*x - ArcTanh[Tanh[a + b*x]])^3*ArcTanh[Tanh[a + b*x]]^(3/2)) + (35*
b^2)/(4*(b*x - ArcTanh[Tanh[a + b*x]])^4*Sqrt[ArcTanh[Tanh[a + b*x]]])

Rule 2161

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]])/(a*Rt[(b*u - a*v)/a, 2]), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {1}{x^3 \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx &=-\frac {1}{2 x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {1}{4} (5 b) \int \frac {1}{x^2 \tanh ^{-1}(\tanh (a+b x))^{7/2}} \, dx\\ &=\frac {5 b}{4 x \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {1}{2 x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {1}{8} \left (35 b^2\right ) \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{9/2}} \, dx\\ &=\frac {5 b}{4 x \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {5 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {1}{2 x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {\left (35 b^2\right ) \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{7/2}} \, dx}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=\frac {5 b}{4 x \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {5 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {1}{2 x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {7 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {\left (35 b^2\right ) \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ &=\frac {5 b}{4 x \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {5 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {1}{2 x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {7 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {35 b^2}{12 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac {\left (35 b^2\right ) \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3}\\ &=\frac {5 b}{4 x \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {5 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {1}{2 x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {7 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {35 b^2}{12 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {35 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {\left (35 b^2\right ) \int \frac {1}{x \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx}{8 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=\frac {35 b^2 \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{9/2}}+\frac {5 b}{4 x \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {5 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{7/2}}-\frac {1}{2 x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {7 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {35 b^2}{12 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {35 b^2}{4 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^4 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 133, normalized size = 0.59 \[ \frac {80 b^2 x^2 \tanh ^{-1}(\tanh (a+b x))+39 b x \tanh ^{-1}(\tanh (a+b x))^2-6 \tanh ^{-1}(\tanh (a+b x))^3-8 b^3 x^3}{12 x^2 \tanh ^{-1}(\tanh (a+b x))^{3/2} \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^4}-\frac {35 b^2 \tanh ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{4 \left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{9/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*ArcTanh[Tanh[a + b*x]]^(5/2)),x]

[Out]

(-35*b^2*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]])/(4*(-(b*x) + ArcTanh[Tan
h[a + b*x]])^(9/2)) + (-8*b^3*x^3 + 80*b^2*x^2*ArcTanh[Tanh[a + b*x]] + 39*b*x*ArcTanh[Tanh[a + b*x]]^2 - 6*Ar
cTanh[Tanh[a + b*x]]^3)/(12*x^2*ArcTanh[Tanh[a + b*x]]^(3/2)*(-(b*x) + ArcTanh[Tanh[a + b*x]])^4)

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 255, normalized size = 1.14 \[ \left [\frac {105 \, {\left (b^{4} x^{4} + 2 \, a b^{3} x^{3} + a^{2} b^{2} x^{2}\right )} \sqrt {a} \log \left (\frac {b x - 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) + 2 \, {\left (105 \, a b^{3} x^{3} + 140 \, a^{2} b^{2} x^{2} + 21 \, a^{3} b x - 6 \, a^{4}\right )} \sqrt {b x + a}}{24 \, {\left (a^{5} b^{2} x^{4} + 2 \, a^{6} b x^{3} + a^{7} x^{2}\right )}}, \frac {105 \, {\left (b^{4} x^{4} + 2 \, a b^{3} x^{3} + a^{2} b^{2} x^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) + {\left (105 \, a b^{3} x^{3} + 140 \, a^{2} b^{2} x^{2} + 21 \, a^{3} b x - 6 \, a^{4}\right )} \sqrt {b x + a}}{12 \, {\left (a^{5} b^{2} x^{4} + 2 \, a^{6} b x^{3} + a^{7} x^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^(5/2),x, algorithm="fricas")

[Out]

[1/24*(105*(b^4*x^4 + 2*a*b^3*x^3 + a^2*b^2*x^2)*sqrt(a)*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + 2*(105
*a*b^3*x^3 + 140*a^2*b^2*x^2 + 21*a^3*b*x - 6*a^4)*sqrt(b*x + a))/(a^5*b^2*x^4 + 2*a^6*b*x^3 + a^7*x^2), 1/12*
(105*(b^4*x^4 + 2*a*b^3*x^3 + a^2*b^2*x^2)*sqrt(-a)*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (105*a*b^3*x^3 + 140*a^
2*b^2*x^2 + 21*a^3*b*x - 6*a^4)*sqrt(b*x + a))/(a^5*b^2*x^4 + 2*a^6*b*x^3 + a^7*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.18, size = 93, normalized size = 0.42 \[ \frac {35 \, b^{2} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{4 \, \sqrt {-a} a^{4}} + \frac {2 \, {\left (9 \, {\left (b x + a\right )} b^{2} + a b^{2}\right )}}{3 \, {\left (b x + a\right )}^{\frac {3}{2}} a^{4}} + \frac {11 \, {\left (b x + a\right )}^{\frac {3}{2}} b^{2} - 13 \, \sqrt {b x + a} a b^{2}}{4 \, a^{4} b^{2} x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^(5/2),x, algorithm="giac")

[Out]

35/4*b^2*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a^4) + 2/3*(9*(b*x + a)*b^2 + a*b^2)/((b*x + a)^(3/2)*a^4) +
 1/4*(11*(b*x + a)^(3/2)*b^2 - 13*sqrt(b*x + a)*a*b^2)/(a^4*b^2*x^2)

________________________________________________________________________________________

maple [A]  time = 0.15, size = 157, normalized size = 0.70 \[ 2 b^{2} \left (\frac {3}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{4} \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}+\frac {1}{3 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{3} \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}+\frac {\frac {\frac {11 \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}{8}+\left (-\frac {13 \arctanh \left (\tanh \left (b x +a \right )\right )}{8}+\frac {13 b x}{8}\right ) \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{b^{2} x^{2}}-\frac {35 \arctanh \left (\frac {\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}\right )}{8 \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{4}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/arctanh(tanh(b*x+a))^(5/2),x)

[Out]

2*b^2*(3/(arctanh(tanh(b*x+a))-b*x)^4/arctanh(tanh(b*x+a))^(1/2)+1/3/(arctanh(tanh(b*x+a))-b*x)^3/arctanh(tanh
(b*x+a))^(3/2)+1/(arctanh(tanh(b*x+a))-b*x)^4*((11/8*arctanh(tanh(b*x+a))^(3/2)+(-13/8*arctanh(tanh(b*x+a))+13
/8*b*x)*arctanh(tanh(b*x+a))^(1/2))/b^2/x^2-35/8/(arctanh(tanh(b*x+a))-b*x)^(1/2)*arctanh(arctanh(tanh(b*x+a))
^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2))))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/arctanh(tanh(b*x+a))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/(x^3*arctanh(tanh(b*x + a))^(5/2)), x)

________________________________________________________________________________________

mupad [B]  time = 8.47, size = 1514, normalized size = 6.76 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*atanh(tanh(a + b*x))^(5/2)),x)

[Out]

((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*((4*(2*
b*(2*log(2/(exp(2*a)*exp(2*b*x) + 1)) - 2*log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 4*b*x) - 7*
b*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)))/(3*(2*
a*b - b*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b
*x))*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)) + (5
6*b^2*x)/(3*(2*a*b - b*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b
*x) + 1)) + 2*b*x))*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))
 + 2*b*x))))/(2*b*x^2 - x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x)
 + 1)) + 2*b*x))^2 - ((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) +
 1))/2)^(1/2)*((140*b)/(3*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x)
 + 1)) + 2*b*x)^3) - (280*b^2*x)/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp
(2*b*x) + 1)) + 2*b*x)^4))/(2*b*x^2 - x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2
*a)*exp(2*b*x) + 1)) + 2*b*x)) + (2^(1/2)*b^2*log((((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2
- log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(e
xp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)*2i - 2^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2
*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x) + 2^(1/2)*b*x)*((2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*
b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^9 + 144*a^2*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a
)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^7 - 672*a^3*(2*a - log((2*exp(2*a)*exp(2*b*x))/
(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^6 + 2016*a^4*(2*a - log((2*exp(2*a)*exp
(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^5 - 4032*a^5*(2*a - log((2*exp
(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^4 + 5376*a^6*(2*a - l
og((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3 - 4608*a^7
*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2 -
 512*a^9 - 18*a*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1
)) + 2*b*x)^8 + 2304*a^8*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2
*b*x) + 1)) + 2*b*x))*1i)/(2*x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2
*b*x) + 1)) + 2*b*x)^(1/2)))*70i)/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*ex
p(2*b*x) + 1)) + 2*b*x)^(9/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \operatorname {atanh}^{\frac {5}{2}}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/atanh(tanh(b*x+a))**(5/2),x)

[Out]

Integral(1/(x**3*atanh(tanh(a + b*x))**(5/2)), x)

________________________________________________________________________________________