3.164 \(\int \frac {1}{x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx\)

Optimal. Leaf size=155 \[ \frac {5 b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {5 b}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {5 b \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{7/2}} \]

[Out]

5*b*arctan(arctanh(tanh(b*x+a))^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))/(b*x-arctanh(tanh(b*x+a)))^(7/2)-1/x/a
rctanh(tanh(b*x+a))^(5/2)+b/(b*x-arctanh(tanh(b*x+a)))/arctanh(tanh(b*x+a))^(5/2)-5/3*b/(b*x-arctanh(tanh(b*x+
a)))^2/arctanh(tanh(b*x+a))^(3/2)+5*b/(b*x-arctanh(tanh(b*x+a)))^3/arctanh(tanh(b*x+a))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2168, 2163, 2161} \[ \frac {5 b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {5 b}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {5 b \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*ArcTanh[Tanh[a + b*x]]^(5/2)),x]

[Out]

(5*b*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]])/(b*x - ArcTanh[Tanh[a + b*x]])^(
7/2) - 1/(x*ArcTanh[Tanh[a + b*x]]^(5/2)) + b/((b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]^(5/2)) -
(5*b)/(3*(b*x - ArcTanh[Tanh[a + b*x]])^2*ArcTanh[Tanh[a + b*x]]^(3/2)) + (5*b)/((b*x - ArcTanh[Tanh[a + b*x]]
)^3*Sqrt[ArcTanh[Tanh[a + b*x]]])

Rule 2161

Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2*ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]])/(a*Rt[(b*u - a*v)/a, 2]), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]

Rule 2163

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Dist[(a*(n + 1))/((n + 1)*(b*u - a*v)), Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Pi
ecewiseLinearQ[u, v, x] && LtQ[n, -1]

Rule 2168

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(u^(m + 1)*v^
n)/(a*(m + 1)), x] - Dist[(b*n)/(a*(m + 1)), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {1}{x^2 \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx &=-\frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {1}{2} (5 b) \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{7/2}} \, dx\\ &=-\frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {(5 b) \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}} \, dx}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=-\frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {5 b}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}-\frac {(5 b) \int \frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{3/2}} \, dx}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2}\\ &=-\frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {5 b}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {5 b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}-\frac {(5 b) \int \frac {1}{x \sqrt {\tanh ^{-1}(\tanh (a+b x))}} \, dx}{2 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )}\\ &=\frac {5 b \tan ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {b x-\tanh ^{-1}(\tanh (a+b x))}}\right )}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^{7/2}}-\frac {1}{x \tanh ^{-1}(\tanh (a+b x))^{5/2}}+\frac {b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \tanh ^{-1}(\tanh (a+b x))^{5/2}}-\frac {5 b}{3 \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {5 b}{\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \sqrt {\tanh ^{-1}(\tanh (a+b x))}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 113, normalized size = 0.73 \[ \frac {14 b x \tanh ^{-1}(\tanh (a+b x))+3 \tanh ^{-1}(\tanh (a+b x))^2-2 b^2 x^2}{3 x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^3 \tanh ^{-1}(\tanh (a+b x))^{3/2}}+\frac {5 b \tanh ^{-1}\left (\frac {\sqrt {\tanh ^{-1}(\tanh (a+b x))}}{\sqrt {\tanh ^{-1}(\tanh (a+b x))-b x}}\right )}{\left (\tanh ^{-1}(\tanh (a+b x))-b x\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*ArcTanh[Tanh[a + b*x]]^(5/2)),x]

[Out]

(5*b*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]]])/(-(b*x) + ArcTanh[Tanh[a + b
*x]])^(7/2) + (-2*b^2*x^2 + 14*b*x*ArcTanh[Tanh[a + b*x]] + 3*ArcTanh[Tanh[a + b*x]]^2)/(3*x*(b*x - ArcTanh[Ta
nh[a + b*x]])^3*ArcTanh[Tanh[a + b*x]]^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 221, normalized size = 1.43 \[ \left [\frac {15 \, {\left (b^{3} x^{3} + 2 \, a b^{2} x^{2} + a^{2} b x\right )} \sqrt {a} \log \left (\frac {b x + 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) - 2 \, {\left (15 \, a b^{2} x^{2} + 20 \, a^{2} b x + 3 \, a^{3}\right )} \sqrt {b x + a}}{6 \, {\left (a^{4} b^{2} x^{3} + 2 \, a^{5} b x^{2} + a^{6} x\right )}}, -\frac {15 \, {\left (b^{3} x^{3} + 2 \, a b^{2} x^{2} + a^{2} b x\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) + {\left (15 \, a b^{2} x^{2} + 20 \, a^{2} b x + 3 \, a^{3}\right )} \sqrt {b x + a}}{3 \, {\left (a^{4} b^{2} x^{3} + 2 \, a^{5} b x^{2} + a^{6} x\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/arctanh(tanh(b*x+a))^(5/2),x, algorithm="fricas")

[Out]

[1/6*(15*(b^3*x^3 + 2*a*b^2*x^2 + a^2*b*x)*sqrt(a)*log((b*x + 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) - 2*(15*a*b^2*
x^2 + 20*a^2*b*x + 3*a^3)*sqrt(b*x + a))/(a^4*b^2*x^3 + 2*a^5*b*x^2 + a^6*x), -1/3*(15*(b^3*x^3 + 2*a*b^2*x^2
+ a^2*b*x)*sqrt(-a)*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (15*a*b^2*x^2 + 20*a^2*b*x + 3*a^3)*sqrt(b*x + a))/(a^4
*b^2*x^3 + 2*a^5*b*x^2 + a^6*x)]

________________________________________________________________________________________

giac [A]  time = 0.22, size = 65, normalized size = 0.42 \[ -\frac {5 \, b \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{\sqrt {-a} a^{3}} - \frac {2 \, {\left (6 \, {\left (b x + a\right )} b + a b\right )}}{3 \, {\left (b x + a\right )}^{\frac {3}{2}} a^{3}} - \frac {\sqrt {b x + a}}{a^{3} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/arctanh(tanh(b*x+a))^(5/2),x, algorithm="giac")

[Out]

-5*b*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a^3) - 2/3*(6*(b*x + a)*b + a*b)/((b*x + a)^(3/2)*a^3) - sqrt(b*
x + a)/(a^3*x)

________________________________________________________________________________________

maple [A]  time = 0.16, size = 130, normalized size = 0.84 \[ 2 b \left (-\frac {1}{3 \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \arctanh \left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}-\frac {2}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{3} \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}-\frac {\frac {\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{2 b x}-\frac {5 \arctanh \left (\frac {\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )}}{\sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}\right )}{2 \sqrt {\arctanh \left (\tanh \left (b x +a \right )\right )-b x}}}{\left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x \right )^{3}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/arctanh(tanh(b*x+a))^(5/2),x)

[Out]

2*b*(-1/3/(arctanh(tanh(b*x+a))-b*x)^2/arctanh(tanh(b*x+a))^(3/2)-2/(arctanh(tanh(b*x+a))-b*x)^3/arctanh(tanh(
b*x+a))^(1/2)-1/(arctanh(tanh(b*x+a))-b*x)^3*(1/2*arctanh(tanh(b*x+a))^(1/2)/b/x-5/2/(arctanh(tanh(b*x+a))-b*x
)^(1/2)*arctanh(arctanh(tanh(b*x+a))^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2))))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{2} \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/arctanh(tanh(b*x+a))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/(x^2*arctanh(tanh(b*x + a))^(5/2)), x)

________________________________________________________________________________________

mupad [B]  time = 7.34, size = 1230, normalized size = 7.94 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*atanh(tanh(a + b*x))^(5/2)),x)

[Out]

(2^(1/2)*b*log((((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/
2)^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(
1/2)*2i - 2^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) +
 2*b*x) + 2^(1/2)*b*x)*((2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*
b*x) + 1)) + 2*b*x)^7 + 84*a^2*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)
*exp(2*b*x) + 1)) + 2*b*x)^5 - 280*a^3*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(
exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^4 + 560*a^4*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) +
 log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3 - 672*a^5*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x)
 + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2 - 128*a^7 - 14*a*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(
2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^6 + 448*a^6*(2*a - log((2*exp(2*a)*exp(2*b*x
))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))*1i)/(2*x*(log(2/(exp(2*a)*exp(2*b*x
) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)))*20i)/(log(2/(exp(2*a)*exp(2*
b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(7/2) - (32*b*(log((2*exp(2*a)*ex
p(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2))/(3*(log((2*exp(2*a)*exp(2*
b*x))/(exp(2*a)*exp(2*b*x) + 1)) - log(2/(exp(2*a)*exp(2*b*x) + 1)))^2*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log
((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2) + ((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(
2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*(x*((32*b)/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log(
(2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3 + (6*b*(8*log(2/(exp(2*a)*exp(2*b*x) + 1)) - 8*l
og((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 16*b*x))/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*ex
p(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^4) - (8*log(2/(exp(2*a)*exp(2*b*x) + 1)) - 8*log((2*exp
(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 16*b*x)/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp
(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3))/(x*(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) -
log(2/(exp(2*a)*exp(2*b*x) + 1))))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{2} \operatorname {atanh}^{\frac {5}{2}}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/atanh(tanh(b*x+a))**(5/2),x)

[Out]

Integral(1/(x**2*atanh(tanh(a + b*x))**(5/2)), x)

________________________________________________________________________________________