3.685 \(\int \frac {e^{-3 \tanh ^{-1}(a x)}}{(c-\frac {c}{a^2 x^2})^4} \, dx\)

Optimal. Leaf size=189 \[ -\frac {(1-a x)^3}{9 a c^4 \left (1-a^2 x^2\right )^{9/2}}+\frac {22 (1-a x)^2}{21 a c^4 \left (1-a^2 x^2\right )^{7/2}}-\frac {478 (1-a x)}{105 a c^4 \left (1-a^2 x^2\right )^{5/2}}-\frac {\sqrt {1-a^2 x^2}}{a c^4}-\frac {4 (630-431 a x)}{315 a c^4 \sqrt {1-a^2 x^2}}+\frac {2 (1155-829 a x)}{315 a c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {3 \sin ^{-1}(a x)}{a c^4} \]

[Out]

-1/9*(-a*x+1)^3/a/c^4/(-a^2*x^2+1)^(9/2)+22/21*(-a*x+1)^2/a/c^4/(-a^2*x^2+1)^(7/2)-478/105*(-a*x+1)/a/c^4/(-a^
2*x^2+1)^(5/2)+2/315*(-829*a*x+1155)/a/c^4/(-a^2*x^2+1)^(3/2)-3*arcsin(a*x)/a/c^4-4/315*(-431*a*x+630)/a/c^4/(
-a^2*x^2+1)^(1/2)-(-a^2*x^2+1)^(1/2)/a/c^4

________________________________________________________________________________________

Rubi [A]  time = 0.64, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {6157, 6149, 1635, 1814, 641, 216} \[ -\frac {(1-a x)^3}{9 a c^4 \left (1-a^2 x^2\right )^{9/2}}+\frac {22 (1-a x)^2}{21 a c^4 \left (1-a^2 x^2\right )^{7/2}}-\frac {478 (1-a x)}{105 a c^4 \left (1-a^2 x^2\right )^{5/2}}-\frac {\sqrt {1-a^2 x^2}}{a c^4}-\frac {4 (630-431 a x)}{315 a c^4 \sqrt {1-a^2 x^2}}+\frac {2 (1155-829 a x)}{315 a c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {3 \sin ^{-1}(a x)}{a c^4} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(3*ArcTanh[a*x])*(c - c/(a^2*x^2))^4),x]

[Out]

-(1 - a*x)^3/(9*a*c^4*(1 - a^2*x^2)^(9/2)) + (22*(1 - a*x)^2)/(21*a*c^4*(1 - a^2*x^2)^(7/2)) - (478*(1 - a*x))
/(105*a*c^4*(1 - a^2*x^2)^(5/2)) + (2*(1155 - 829*a*x))/(315*a*c^4*(1 - a^2*x^2)^(3/2)) - (4*(630 - 431*a*x))/
(315*a*c^4*Sqrt[1 - a^2*x^2]) - Sqrt[1 - a^2*x^2]/(a*c^4) - (3*ArcSin[a*x])/(a*c^4)

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 1635

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, -Simp[(d*f*(d + e*x)^m*(a + c*x^2)^(p + 1))/(2*
a*e*(p + 1)), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)*Q
 + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p +
 1/2, 0] && GtQ[m, 0]

Rule 1814

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[((a
*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]

Rule 6149

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[(x^m*(1 -
a^2*x^2)^(p + n/2))/(1 - a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || G
tQ[c, 0]) && ILtQ[(n - 1)/2, 0] &&  !IntegerQ[p - n/2]

Rule 6157

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[d^p, Int[(u*(1 - a^2*x^
2)^p*E^(n*ArcTanh[a*x]))/x^(2*p), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c + a^2*d, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {e^{-3 \tanh ^{-1}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx &=\frac {a^8 \int \frac {e^{-3 \tanh ^{-1}(a x)} x^8}{\left (1-a^2 x^2\right )^4} \, dx}{c^4}\\ &=\frac {a^8 \int \frac {x^8 (1-a x)^3}{\left (1-a^2 x^2\right )^{11/2}} \, dx}{c^4}\\ &=-\frac {(1-a x)^3}{9 a c^4 \left (1-a^2 x^2\right )^{9/2}}-\frac {a^8 \int \frac {(1-a x)^2 \left (\frac {3}{a^8}-\frac {9 x}{a^7}+\frac {9 x^2}{a^6}-\frac {9 x^3}{a^5}+\frac {9 x^4}{a^4}-\frac {9 x^5}{a^3}+\frac {9 x^6}{a^2}-\frac {9 x^7}{a}\right )}{\left (1-a^2 x^2\right )^{9/2}} \, dx}{9 c^4}\\ &=-\frac {(1-a x)^3}{9 a c^4 \left (1-a^2 x^2\right )^{9/2}}+\frac {22 (1-a x)^2}{21 a c^4 \left (1-a^2 x^2\right )^{7/2}}+\frac {a^8 \int \frac {(1-a x) \left (\frac {111}{a^8}-\frac {378 x}{a^7}+\frac {315 x^2}{a^6}-\frac {252 x^3}{a^5}+\frac {189 x^4}{a^4}-\frac {126 x^5}{a^3}+\frac {63 x^6}{a^2}\right )}{\left (1-a^2 x^2\right )^{7/2}} \, dx}{63 c^4}\\ &=-\frac {(1-a x)^3}{9 a c^4 \left (1-a^2 x^2\right )^{9/2}}+\frac {22 (1-a x)^2}{21 a c^4 \left (1-a^2 x^2\right )^{7/2}}-\frac {478 (1-a x)}{105 a c^4 \left (1-a^2 x^2\right )^{5/2}}-\frac {a^8 \int \frac {\frac {879}{a^8}-\frac {4725 x}{a^7}+\frac {3150 x^2}{a^6}-\frac {1890 x^3}{a^5}+\frac {945 x^4}{a^4}-\frac {315 x^5}{a^3}}{\left (1-a^2 x^2\right )^{5/2}} \, dx}{315 c^4}\\ &=-\frac {(1-a x)^3}{9 a c^4 \left (1-a^2 x^2\right )^{9/2}}+\frac {22 (1-a x)^2}{21 a c^4 \left (1-a^2 x^2\right )^{7/2}}-\frac {478 (1-a x)}{105 a c^4 \left (1-a^2 x^2\right )^{5/2}}+\frac {2 (1155-829 a x)}{315 a c^4 \left (1-a^2 x^2\right )^{3/2}}+\frac {a^8 \int \frac {\frac {2337}{a^8}-\frac {6615 x}{a^7}+\frac {2835 x^2}{a^6}-\frac {945 x^3}{a^5}}{\left (1-a^2 x^2\right )^{3/2}} \, dx}{945 c^4}\\ &=-\frac {(1-a x)^3}{9 a c^4 \left (1-a^2 x^2\right )^{9/2}}+\frac {22 (1-a x)^2}{21 a c^4 \left (1-a^2 x^2\right )^{7/2}}-\frac {478 (1-a x)}{105 a c^4 \left (1-a^2 x^2\right )^{5/2}}+\frac {2 (1155-829 a x)}{315 a c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {4 (630-431 a x)}{315 a c^4 \sqrt {1-a^2 x^2}}-\frac {a^8 \int \frac {\frac {2835}{a^8}-\frac {945 x}{a^7}}{\sqrt {1-a^2 x^2}} \, dx}{945 c^4}\\ &=-\frac {(1-a x)^3}{9 a c^4 \left (1-a^2 x^2\right )^{9/2}}+\frac {22 (1-a x)^2}{21 a c^4 \left (1-a^2 x^2\right )^{7/2}}-\frac {478 (1-a x)}{105 a c^4 \left (1-a^2 x^2\right )^{5/2}}+\frac {2 (1155-829 a x)}{315 a c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {4 (630-431 a x)}{315 a c^4 \sqrt {1-a^2 x^2}}-\frac {\sqrt {1-a^2 x^2}}{a c^4}-\frac {3 \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx}{c^4}\\ &=-\frac {(1-a x)^3}{9 a c^4 \left (1-a^2 x^2\right )^{9/2}}+\frac {22 (1-a x)^2}{21 a c^4 \left (1-a^2 x^2\right )^{7/2}}-\frac {478 (1-a x)}{105 a c^4 \left (1-a^2 x^2\right )^{5/2}}+\frac {2 (1155-829 a x)}{315 a c^4 \left (1-a^2 x^2\right )^{3/2}}-\frac {4 (630-431 a x)}{315 a c^4 \sqrt {1-a^2 x^2}}-\frac {\sqrt {1-a^2 x^2}}{a c^4}-\frac {3 \sin ^{-1}(a x)}{a c^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 122, normalized size = 0.65 \[ \frac {315 a^7 x^7+2669 a^6 x^6+2967 a^5 x^5-4029 a^4 x^4-7399 a^3 x^3-339 a^2 x^2-945 (a x-1) (a x+1)^4 \sqrt {1-a^2 x^2} \sin ^{-1}(a x)+4047 a x+1664}{315 a (a x-1) \sqrt {1-a^2 x^2} (a c x+c)^4} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(3*ArcTanh[a*x])*(c - c/(a^2*x^2))^4),x]

[Out]

(1664 + 4047*a*x - 339*a^2*x^2 - 7399*a^3*x^3 - 4029*a^4*x^4 + 2967*a^5*x^5 + 2669*a^6*x^6 + 315*a^7*x^7 - 945
*(-1 + a*x)*(1 + a*x)^4*Sqrt[1 - a^2*x^2]*ArcSin[a*x])/(315*a*(-1 + a*x)*(c + a*c*x)^4*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 278, normalized size = 1.47 \[ -\frac {1664 \, a^{7} x^{7} + 4992 \, a^{6} x^{6} + 1664 \, a^{5} x^{5} - 8320 \, a^{4} x^{4} - 8320 \, a^{3} x^{3} + 1664 \, a^{2} x^{2} + 4992 \, a x - 1890 \, {\left (a^{7} x^{7} + 3 \, a^{6} x^{6} + a^{5} x^{5} - 5 \, a^{4} x^{4} - 5 \, a^{3} x^{3} + a^{2} x^{2} + 3 \, a x + 1\right )} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) + {\left (315 \, a^{7} x^{7} + 2669 \, a^{6} x^{6} + 2967 \, a^{5} x^{5} - 4029 \, a^{4} x^{4} - 7399 \, a^{3} x^{3} - 339 \, a^{2} x^{2} + 4047 \, a x + 1664\right )} \sqrt {-a^{2} x^{2} + 1} + 1664}{315 \, {\left (a^{8} c^{4} x^{7} + 3 \, a^{7} c^{4} x^{6} + a^{6} c^{4} x^{5} - 5 \, a^{5} c^{4} x^{4} - 5 \, a^{4} c^{4} x^{3} + a^{3} c^{4} x^{2} + 3 \, a^{2} c^{4} x + a c^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(c-c/a^2/x^2)^4,x, algorithm="fricas")

[Out]

-1/315*(1664*a^7*x^7 + 4992*a^6*x^6 + 1664*a^5*x^5 - 8320*a^4*x^4 - 8320*a^3*x^3 + 1664*a^2*x^2 + 4992*a*x - 1
890*(a^7*x^7 + 3*a^6*x^6 + a^5*x^5 - 5*a^4*x^4 - 5*a^3*x^3 + a^2*x^2 + 3*a*x + 1)*arctan((sqrt(-a^2*x^2 + 1) -
 1)/(a*x)) + (315*a^7*x^7 + 2669*a^6*x^6 + 2967*a^5*x^5 - 4029*a^4*x^4 - 7399*a^3*x^3 - 339*a^2*x^2 + 4047*a*x
 + 1664)*sqrt(-a^2*x^2 + 1) + 1664)/(a^8*c^4*x^7 + 3*a^7*c^4*x^6 + a^6*c^4*x^5 - 5*a^5*c^4*x^4 - 5*a^4*c^4*x^3
 + a^3*c^4*x^2 + 3*a^2*c^4*x + a*c^4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}}{{\left (a x + 1\right )}^{3} {\left (c - \frac {c}{a^{2} x^{2}}\right )}^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(c-c/a^2/x^2)^4,x, algorithm="giac")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)/((a*x + 1)^3*(c - c/(a^2*x^2))^4), x)

________________________________________________________________________________________

maple [B]  time = 0.08, size = 576, normalized size = 3.05 \[ -\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{144 a^{8} c^{4} \left (x +\frac {1}{a}\right )^{7}}+\frac {13 \left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{252 a^{7} c^{4} \left (x +\frac {1}{a}\right )^{6}}-\frac {1629 \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}\right )}{512 c^{4} \sqrt {a^{2}}}-\frac {811 \left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{384 a^{3} c^{4} \left (x +\frac {1}{a}\right )^{2}}-\frac {1629 \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}\, x}{512 c^{4}}+\frac {\left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {5}{2}}}{384 a^{5} c^{4} \left (x -\frac {1}{a}\right )^{4}}+\frac {29 \left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {5}{2}}}{768 a^{4} c^{4} \left (x -\frac {1}{a}\right )^{3}}-\frac {25 \left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {5}{2}}}{192 a^{3} c^{4} \left (x -\frac {1}{a}\right )^{2}}+\frac {93 \sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}\, x}{512 c^{4}}+\frac {93 \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}\right )}{512 c^{4} \sqrt {a^{2}}}-\frac {1723 \left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{10080 a^{6} c^{4} \left (x +\frac {1}{a}\right )^{5}}+\frac {35 \left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{96 a^{5} c^{4} \left (x +\frac {1}{a}\right )^{4}}-\frac {769 \left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{768 a^{4} c^{4} \left (x +\frac {1}{a}\right )^{3}}-\frac {31 \left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {3}{2}}}{256 a \,c^{4}}-\frac {543 \left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {3}{2}}}{256 a \,c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(c-c/a^2/x^2)^4,x)

[Out]

-1/144/a^8/c^4/(x+1/a)^7*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2)+13/252/a^7/c^4/(x+1/a)^6*(-a^2*(x+1/a)^2+2*a*(x+1/
a))^(5/2)-1629/512/c^4/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2))-811/384/a^3/c^4/(x
+1/a)^2*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2)-1629/512/c^4*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2)*x+1/384/a^5/c^4/(x-
1/a)^4*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(5/2)+29/768/a^4/c^4/(x-1/a)^3*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(5/2)-25/192/a
^3/c^4/(x-1/a)^2*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(5/2)+93/512/c^4*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2)*x+93/512/c^4
/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2))-1723/10080/a^6/c^4/(x+1/a)^5*(-a^2*(x+1/
a)^2+2*a*(x+1/a))^(5/2)+35/96/a^5/c^4/(x+1/a)^4*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2)-769/768/a^4/c^4/(x+1/a)^3*(
-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2)-31/256/a/c^4*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(3/2)-543/256/a/c^4*(-a^2*(x+1/a)^
2+2*a*(x+1/a))^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}}}{{\left (a x + 1\right )}^{3} {\left (c - \frac {c}{a^{2} x^{2}}\right )}^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(c-c/a^2/x^2)^4,x, algorithm="maxima")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)/((a*x + 1)^3*(c - c/(a^2*x^2))^4), x)

________________________________________________________________________________________

mupad [B]  time = 1.79, size = 671, normalized size = 3.55 \[ \frac {a\,\sqrt {1-a^2\,x^2}}{96\,\left (a^4\,c^4\,x^2-2\,a^3\,c^4\,x+a^2\,c^4\right )}+\frac {67\,a\,\sqrt {1-a^2\,x^2}}{24\,\left (a^4\,c^4\,x^2+2\,a^3\,c^4\,x+a^2\,c^4\right )}+\frac {\sqrt {1-a^2\,x^2}}{36\,\sqrt {-a^2}\,\left (5\,c^4\,x\,\sqrt {-a^2}+\frac {c^4\,\sqrt {-a^2}}{a}+10\,a^2\,c^4\,x^3\,\sqrt {-a^2}+5\,a^3\,c^4\,x^4\,\sqrt {-a^2}+a^4\,c^4\,x^5\,\sqrt {-a^2}+10\,a\,c^4\,x^2\,\sqrt {-a^2}\right )}-\frac {3\,\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )}{c^4\,\sqrt {-a^2}}+\frac {a^3\,\sqrt {1-a^2\,x^2}}{10\,\left (a^6\,c^4\,x^2+2\,a^5\,c^4\,x+a^4\,c^4\right )}-\frac {1759\,a^8\,\sqrt {1-a^2\,x^2}}{2520\,\left (a^{11}\,c^4\,x^2+2\,a^{10}\,c^4\,x+a^9\,c^4\right )}-\frac {\sqrt {1-a^2\,x^2}}{a\,c^4}+\frac {a\,\sqrt {1-a^2\,x^2}}{4\,\left (a^6\,c^4\,x^4+4\,a^5\,c^4\,x^3+6\,a^4\,c^4\,x^2+4\,a^3\,c^4\,x+a^2\,c^4\right )}+\frac {113591\,\sqrt {1-a^2\,x^2}}{20160\,\sqrt {-a^2}\,\left (c^4\,x\,\sqrt {-a^2}+\frac {c^4\,\sqrt {-a^2}}{a}\right )}-\frac {31\,\sqrt {1-a^2\,x^2}}{192\,\sqrt {-a^2}\,\left (c^4\,x\,\sqrt {-a^2}-\frac {c^4\,\sqrt {-a^2}}{a}\right )}+\frac {1507\,\sqrt {1-a^2\,x^2}}{1680\,\sqrt {-a^2}\,\left (3\,c^4\,x\,\sqrt {-a^2}+\frac {c^4\,\sqrt {-a^2}}{a}+a^2\,c^4\,x^3\,\sqrt {-a^2}+3\,a\,c^4\,x^2\,\sqrt {-a^2}\right )}-\frac {a^{10}\,\sqrt {1-a^2\,x^2}}{63\,\left (a^{15}\,c^4\,x^4+4\,a^{14}\,c^4\,x^3+6\,a^{13}\,c^4\,x^2+4\,a^{12}\,c^4\,x+a^{11}\,c^4\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - a^2*x^2)^(3/2)/((c - c/(a^2*x^2))^4*(a*x + 1)^3),x)

[Out]

(a*(1 - a^2*x^2)^(1/2))/(96*(a^2*c^4 - 2*a^3*c^4*x + a^4*c^4*x^2)) + (67*a*(1 - a^2*x^2)^(1/2))/(24*(a^2*c^4 +
 2*a^3*c^4*x + a^4*c^4*x^2)) + (1 - a^2*x^2)^(1/2)/(36*(-a^2)^(1/2)*(5*c^4*x*(-a^2)^(1/2) + (c^4*(-a^2)^(1/2))
/a + 10*a^2*c^4*x^3*(-a^2)^(1/2) + 5*a^3*c^4*x^4*(-a^2)^(1/2) + a^4*c^4*x^5*(-a^2)^(1/2) + 10*a*c^4*x^2*(-a^2)
^(1/2))) - (3*asinh(x*(-a^2)^(1/2)))/(c^4*(-a^2)^(1/2)) + (a^3*(1 - a^2*x^2)^(1/2))/(10*(a^4*c^4 + 2*a^5*c^4*x
 + a^6*c^4*x^2)) - (1759*a^8*(1 - a^2*x^2)^(1/2))/(2520*(a^9*c^4 + 2*a^10*c^4*x + a^11*c^4*x^2)) - (1 - a^2*x^
2)^(1/2)/(a*c^4) + (a*(1 - a^2*x^2)^(1/2))/(4*(a^2*c^4 + 4*a^3*c^4*x + 6*a^4*c^4*x^2 + 4*a^5*c^4*x^3 + a^6*c^4
*x^4)) + (113591*(1 - a^2*x^2)^(1/2))/(20160*(-a^2)^(1/2)*(c^4*x*(-a^2)^(1/2) + (c^4*(-a^2)^(1/2))/a)) - (31*(
1 - a^2*x^2)^(1/2))/(192*(-a^2)^(1/2)*(c^4*x*(-a^2)^(1/2) - (c^4*(-a^2)^(1/2))/a)) + (1507*(1 - a^2*x^2)^(1/2)
)/(1680*(-a^2)^(1/2)*(3*c^4*x*(-a^2)^(1/2) + (c^4*(-a^2)^(1/2))/a + a^2*c^4*x^3*(-a^2)^(1/2) + 3*a*c^4*x^2*(-a
^2)^(1/2))) - (a^10*(1 - a^2*x^2)^(1/2))/(63*(a^11*c^4 + 4*a^12*c^4*x + 6*a^13*c^4*x^2 + 4*a^14*c^4*x^3 + a^15
*c^4*x^4))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {a^{8} \left (\int \frac {x^{8} \sqrt {- a^{2} x^{2} + 1}}{a^{11} x^{11} + 3 a^{10} x^{10} - a^{9} x^{9} - 11 a^{8} x^{8} - 6 a^{7} x^{7} + 14 a^{6} x^{6} + 14 a^{5} x^{5} - 6 a^{4} x^{4} - 11 a^{3} x^{3} - a^{2} x^{2} + 3 a x + 1}\, dx + \int \left (- \frac {a^{2} x^{10} \sqrt {- a^{2} x^{2} + 1}}{a^{11} x^{11} + 3 a^{10} x^{10} - a^{9} x^{9} - 11 a^{8} x^{8} - 6 a^{7} x^{7} + 14 a^{6} x^{6} + 14 a^{5} x^{5} - 6 a^{4} x^{4} - 11 a^{3} x^{3} - a^{2} x^{2} + 3 a x + 1}\right )\, dx\right )}{c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)**3*(-a**2*x**2+1)**(3/2)/(c-c/a**2/x**2)**4,x)

[Out]

a**8*(Integral(x**8*sqrt(-a**2*x**2 + 1)/(a**11*x**11 + 3*a**10*x**10 - a**9*x**9 - 11*a**8*x**8 - 6*a**7*x**7
 + 14*a**6*x**6 + 14*a**5*x**5 - 6*a**4*x**4 - 11*a**3*x**3 - a**2*x**2 + 3*a*x + 1), x) + Integral(-a**2*x**1
0*sqrt(-a**2*x**2 + 1)/(a**11*x**11 + 3*a**10*x**10 - a**9*x**9 - 11*a**8*x**8 - 6*a**7*x**7 + 14*a**6*x**6 +
14*a**5*x**5 - 6*a**4*x**4 - 11*a**3*x**3 - a**2*x**2 + 3*a*x + 1), x))/c**4

________________________________________________________________________________________