3.48 \(\int \frac {(f+g x)^2 (a+b \sinh ^{-1}(c x))}{\sqrt {d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=258 \[ \frac {f^2 \sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 b c \sqrt {c^2 d x^2+d}}+\frac {2 f g \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )}{c^2 \sqrt {c^2 d x^2+d}}+\frac {g^2 x \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )}{2 c^2 \sqrt {c^2 d x^2+d}}-\frac {g^2 \sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c^3 \sqrt {c^2 d x^2+d}}-\frac {2 b f g x \sqrt {c^2 x^2+1}}{c \sqrt {c^2 d x^2+d}}-\frac {b g^2 x^2 \sqrt {c^2 x^2+1}}{4 c \sqrt {c^2 d x^2+d}} \]

[Out]

2*f*g*(c^2*x^2+1)*(a+b*arcsinh(c*x))/c^2/(c^2*d*x^2+d)^(1/2)+1/2*g^2*x*(c^2*x^2+1)*(a+b*arcsinh(c*x))/c^2/(c^2
*d*x^2+d)^(1/2)-2*b*f*g*x*(c^2*x^2+1)^(1/2)/c/(c^2*d*x^2+d)^(1/2)-1/4*b*g^2*x^2*(c^2*x^2+1)^(1/2)/c/(c^2*d*x^2
+d)^(1/2)+1/2*f^2*(a+b*arcsinh(c*x))^2*(c^2*x^2+1)^(1/2)/b/c/(c^2*d*x^2+d)^(1/2)-1/4*g^2*(a+b*arcsinh(c*x))^2*
(c^2*x^2+1)^(1/2)/b/c^3/(c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.43, antiderivative size = 258, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {5835, 5821, 5675, 5717, 8, 5758, 30} \[ \frac {f^2 \sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 b c \sqrt {c^2 d x^2+d}}+\frac {2 f g \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )}{c^2 \sqrt {c^2 d x^2+d}}-\frac {g^2 \sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c^3 \sqrt {c^2 d x^2+d}}+\frac {g^2 x \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )}{2 c^2 \sqrt {c^2 d x^2+d}}-\frac {2 b f g x \sqrt {c^2 x^2+1}}{c \sqrt {c^2 d x^2+d}}-\frac {b g^2 x^2 \sqrt {c^2 x^2+1}}{4 c \sqrt {c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x)^2*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

(-2*b*f*g*x*Sqrt[1 + c^2*x^2])/(c*Sqrt[d + c^2*d*x^2]) - (b*g^2*x^2*Sqrt[1 + c^2*x^2])/(4*c*Sqrt[d + c^2*d*x^2
]) + (2*f*g*(1 + c^2*x^2)*(a + b*ArcSinh[c*x]))/(c^2*Sqrt[d + c^2*d*x^2]) + (g^2*x*(1 + c^2*x^2)*(a + b*ArcSin
h[c*x]))/(2*c^2*Sqrt[d + c^2*d*x^2]) + (f^2*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^2)/(2*b*c*Sqrt[d + c^2*d*x^
2]) - (g^2*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^2)/(4*b*c^3*Sqrt[d + c^2*d*x^2])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 5717

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)
^(p + 1)*(a + b*ArcSinh[c*x])^n)/(2*e*(p + 1)), x] - Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p +
 1)*(1 + c^2*x^2)^FracPart[p]), Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rule 5758

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n)/(e*m), x] + (-Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)
^(m - 2)*(a + b*ArcSinh[c*x])^n)/Sqrt[d + e*x^2], x], x] - Dist[(b*f*n*Sqrt[1 + c^2*x^2])/(c*m*Sqrt[d + e*x^2]
), Int[(f*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] &&
 GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rule 5821

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g
}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && ((EqQ[n, 1] && GtQ[p,
-1]) || GtQ[p, 0] || EqQ[m, 1] || (EqQ[m, 2] && LtQ[p, -2]))

Rule 5835

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Dist[(d^IntPart[p]*(d + e*x^2)^FracPart[p])/(1 + c^2*x^2)^FracPart[p], Int[(f + g*x)^m*(1 + c^2*x^2)^p*(a +
 b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && IntegerQ[p
 - 1/2] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int \frac {(f+g x)^2 \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {d+c^2 d x^2}} \, dx &=\frac {\sqrt {1+c^2 x^2} \int \frac {(f+g x)^2 \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}} \, dx}{\sqrt {d+c^2 d x^2}}\\ &=\frac {\sqrt {1+c^2 x^2} \int \left (\frac {f^2 \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}+\frac {2 f g x \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}+\frac {g^2 x^2 \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}\right ) \, dx}{\sqrt {d+c^2 d x^2}}\\ &=\frac {\left (f^2 \sqrt {1+c^2 x^2}\right ) \int \frac {a+b \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}} \, dx}{\sqrt {d+c^2 d x^2}}+\frac {\left (2 f g \sqrt {1+c^2 x^2}\right ) \int \frac {x \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}} \, dx}{\sqrt {d+c^2 d x^2}}+\frac {\left (g^2 \sqrt {1+c^2 x^2}\right ) \int \frac {x^2 \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}} \, dx}{\sqrt {d+c^2 d x^2}}\\ &=\frac {2 f g \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{c^2 \sqrt {d+c^2 d x^2}}+\frac {g^2 x \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{2 c^2 \sqrt {d+c^2 d x^2}}+\frac {f^2 \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 b c \sqrt {d+c^2 d x^2}}-\frac {\left (2 b f g \sqrt {1+c^2 x^2}\right ) \int 1 \, dx}{c \sqrt {d+c^2 d x^2}}-\frac {\left (g^2 \sqrt {1+c^2 x^2}\right ) \int \frac {a+b \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}} \, dx}{2 c^2 \sqrt {d+c^2 d x^2}}-\frac {\left (b g^2 \sqrt {1+c^2 x^2}\right ) \int x \, dx}{2 c \sqrt {d+c^2 d x^2}}\\ &=-\frac {2 b f g x \sqrt {1+c^2 x^2}}{c \sqrt {d+c^2 d x^2}}-\frac {b g^2 x^2 \sqrt {1+c^2 x^2}}{4 c \sqrt {d+c^2 d x^2}}+\frac {2 f g \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{c^2 \sqrt {d+c^2 d x^2}}+\frac {g^2 x \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )}{2 c^2 \sqrt {d+c^2 d x^2}}+\frac {f^2 \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 b c \sqrt {d+c^2 d x^2}}-\frac {g^2 \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c^3 \sqrt {d+c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.61, size = 233, normalized size = 0.90 \[ \frac {4 c \sqrt {d} g \left (a \left (c^2 x^2+1\right ) (4 f+g x)-4 b c f x \sqrt {c^2 x^2+1}\right )+4 a \sqrt {c^2 d x^2+d} \left (2 c^2 f^2-g^2\right ) \log \left (\sqrt {d} \sqrt {c^2 d x^2+d}+c d x\right )+2 b \sqrt {d} \sqrt {c^2 x^2+1} \left (2 c^2 f^2-g^2\right ) \sinh ^{-1}(c x)^2+4 b c \sqrt {d} g \left (c^2 x^2+1\right ) \sinh ^{-1}(c x) (4 f+g x)-b \sqrt {d} g^2 \sqrt {c^2 x^2+1} \cosh \left (2 \sinh ^{-1}(c x)\right )}{8 c^3 \sqrt {d} \sqrt {c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)^2*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

(4*c*Sqrt[d]*g*(-4*b*c*f*x*Sqrt[1 + c^2*x^2] + a*(4*f + g*x)*(1 + c^2*x^2)) + 4*b*c*Sqrt[d]*g*(4*f + g*x)*(1 +
 c^2*x^2)*ArcSinh[c*x] + 2*b*Sqrt[d]*(2*c^2*f^2 - g^2)*Sqrt[1 + c^2*x^2]*ArcSinh[c*x]^2 - b*Sqrt[d]*g^2*Sqrt[1
 + c^2*x^2]*Cosh[2*ArcSinh[c*x]] + 4*a*(2*c^2*f^2 - g^2)*Sqrt[d + c^2*d*x^2]*Log[c*d*x + Sqrt[d]*Sqrt[d + c^2*
d*x^2]])/(8*c^3*Sqrt[d]*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.62, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a g^{2} x^{2} + 2 \, a f g x + a f^{2} + {\left (b g^{2} x^{2} + 2 \, b f g x + b f^{2}\right )} \operatorname {arsinh}\left (c x\right )}{\sqrt {c^{2} d x^{2} + d}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral((a*g^2*x^2 + 2*a*f*g*x + a*f^2 + (b*g^2*x^2 + 2*b*f*g*x + b*f^2)*arcsinh(c*x))/sqrt(c^2*d*x^2 + d), x
)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (g x + f\right )}^{2} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}}{\sqrt {c^{2} d x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((g*x + f)^2*(b*arcsinh(c*x) + a)/sqrt(c^2*d*x^2 + d), x)

________________________________________________________________________________________

maple [B]  time = 0.61, size = 486, normalized size = 1.88 \[ \frac {a \,g^{2} x \sqrt {c^{2} d \,x^{2}+d}}{2 c^{2} d}-\frac {a \,g^{2} \ln \left (\frac {x \,c^{2} d}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{2 c^{2} \sqrt {c^{2} d}}+\frac {2 a f g \sqrt {c^{2} d \,x^{2}+d}}{c^{2} d}+\frac {a \,f^{2} \ln \left (\frac {x \,c^{2} d}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{\sqrt {c^{2} d}}+\frac {2 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, f g \arcsinh \left (c x \right ) x^{2}}{d \left (c^{2} x^{2}+1\right )}-\frac {2 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, f g x}{c d \sqrt {c^{2} x^{2}+1}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2} f^{2}}{2 \sqrt {c^{2} x^{2}+1}\, c d}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2} g^{2}}{4 \sqrt {c^{2} x^{2}+1}\, c^{3} d}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, g^{2}}{8 c^{3} d \sqrt {c^{2} x^{2}+1}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, g^{2} \arcsinh \left (c x \right ) x^{3}}{2 d \left (c^{2} x^{2}+1\right )}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, g^{2} x^{2}}{4 c d \sqrt {c^{2} x^{2}+1}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, g^{2} \arcsinh \left (c x \right ) x}{2 c^{2} d \left (c^{2} x^{2}+1\right )}+\frac {2 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, f g \arcsinh \left (c x \right )}{c^{2} d \left (c^{2} x^{2}+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^2*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x)

[Out]

1/2*a*g^2*x/c^2/d*(c^2*d*x^2+d)^(1/2)-1/2*a*g^2/c^2*ln(x*c^2*d/(c^2*d)^(1/2)+(c^2*d*x^2+d)^(1/2))/(c^2*d)^(1/2
)+2*a*f*g/c^2/d*(c^2*d*x^2+d)^(1/2)+a*f^2*ln(x*c^2*d/(c^2*d)^(1/2)+(c^2*d*x^2+d)^(1/2))/(c^2*d)^(1/2)+2*b*(d*(
c^2*x^2+1))^(1/2)*f*g/d/(c^2*x^2+1)*arcsinh(c*x)*x^2-2*b*(d*(c^2*x^2+1))^(1/2)*f*g/c/d/(c^2*x^2+1)^(1/2)*x+1/2
*b*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*x)^2/(c^2*x^2+1)^(1/2)/c/d*f^2-1/4*b*(d*(c^2*x^2+1))^(1/2)*arcsinh(c*x)^2/(
c^2*x^2+1)^(1/2)/c^3/d*g^2-1/8*b*(d*(c^2*x^2+1))^(1/2)*g^2/c^3/d/(c^2*x^2+1)^(1/2)+1/2*b*(d*(c^2*x^2+1))^(1/2)
*g^2/d/(c^2*x^2+1)*arcsinh(c*x)*x^3-1/4*b*(d*(c^2*x^2+1))^(1/2)*g^2/c/d/(c^2*x^2+1)^(1/2)*x^2+1/2*b*(d*(c^2*x^
2+1))^(1/2)*g^2/c^2/d/(c^2*x^2+1)*arcsinh(c*x)*x+2*b*(d*(c^2*x^2+1))^(1/2)*f*g/c^2/d/(c^2*x^2+1)*arcsinh(c*x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^2*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (f+g\,x\right )}^2\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}{\sqrt {d\,c^2\,x^2+d}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)^2*(a + b*asinh(c*x)))/(d + c^2*d*x^2)^(1/2),x)

[Out]

int(((f + g*x)^2*(a + b*asinh(c*x)))/(d + c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {asinh}{\left (c x \right )}\right ) \left (f + g x\right )^{2}}{\sqrt {d \left (c^{2} x^{2} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**2*(a+b*asinh(c*x))/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*asinh(c*x))*(f + g*x)**2/sqrt(d*(c**2*x**2 + 1)), x)

________________________________________________________________________________________