3.68 \(\int \frac {\cot ^{-1}(x)}{(a+a x^2)^{5/2}} \, dx\)

Optimal. Leaf size=79 \[ -\frac {2}{3 a^2 \sqrt {a x^2+a}}+\frac {2 x \cot ^{-1}(x)}{3 a^2 \sqrt {a x^2+a}}-\frac {1}{9 a \left (a x^2+a\right )^{3/2}}+\frac {x \cot ^{-1}(x)}{3 a \left (a x^2+a\right )^{3/2}} \]

[Out]

-1/9/a/(a*x^2+a)^(3/2)+1/3*x*arccot(x)/a/(a*x^2+a)^(3/2)-2/3/a^2/(a*x^2+a)^(1/2)+2/3*x*arccot(x)/a^2/(a*x^2+a)
^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4897, 4895} \[ -\frac {2}{3 a^2 \sqrt {a x^2+a}}+\frac {2 x \cot ^{-1}(x)}{3 a^2 \sqrt {a x^2+a}}-\frac {1}{9 a \left (a x^2+a\right )^{3/2}}+\frac {x \cot ^{-1}(x)}{3 a \left (a x^2+a\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[ArcCot[x]/(a + a*x^2)^(5/2),x]

[Out]

-1/(9*a*(a + a*x^2)^(3/2)) - 2/(3*a^2*Sqrt[a + a*x^2]) + (x*ArcCot[x])/(3*a*(a + a*x^2)^(3/2)) + (2*x*ArcCot[x
])/(3*a^2*Sqrt[a + a*x^2])

Rule 4895

Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> -Simp[b/(c*d*Sqrt[d + e*x^2])
, x] + Simp[(x*(a + b*ArcCot[c*x]))/(d*Sqrt[d + e*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d]

Rule 4897

Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> -Simp[(b*(d + e*x^2)^(q + 1))/
(4*c*d*(q + 1)^2), x] + (Dist[(2*q + 3)/(2*d*(q + 1)), Int[(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x]), x], x] - S
imp[(x*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x]))/(2*d*(q + 1)), x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*
d] && LtQ[q, -1] && NeQ[q, -3/2]

Rubi steps

\begin {align*} \int \frac {\cot ^{-1}(x)}{\left (a+a x^2\right )^{5/2}} \, dx &=-\frac {1}{9 a \left (a+a x^2\right )^{3/2}}+\frac {x \cot ^{-1}(x)}{3 a \left (a+a x^2\right )^{3/2}}+\frac {2 \int \frac {\cot ^{-1}(x)}{\left (a+a x^2\right )^{3/2}} \, dx}{3 a}\\ &=-\frac {1}{9 a \left (a+a x^2\right )^{3/2}}-\frac {2}{3 a^2 \sqrt {a+a x^2}}+\frac {x \cot ^{-1}(x)}{3 a \left (a+a x^2\right )^{3/2}}+\frac {2 x \cot ^{-1}(x)}{3 a^2 \sqrt {a+a x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 37, normalized size = 0.47 \[ \frac {\left (6 x^3+9 x\right ) \cot ^{-1}(x)-6 x^2-7}{9 a \left (a \left (x^2+1\right )\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcCot[x]/(a + a*x^2)^(5/2),x]

[Out]

(-7 - 6*x^2 + (9*x + 6*x^3)*ArcCot[x])/(9*a*(a*(1 + x^2))^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 52, normalized size = 0.66 \[ -\frac {\sqrt {a x^{2} + a} {\left (6 \, x^{2} - 3 \, {\left (2 \, x^{3} + 3 \, x\right )} \operatorname {arccot}\relax (x) + 7\right )}}{9 \, {\left (a^{3} x^{4} + 2 \, a^{3} x^{2} + a^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(x)/(a*x^2+a)^(5/2),x, algorithm="fricas")

[Out]

-1/9*sqrt(a*x^2 + a)*(6*x^2 - 3*(2*x^3 + 3*x)*arccot(x) + 7)/(a^3*x^4 + 2*a^3*x^2 + a^3)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 55, normalized size = 0.70 \[ \frac {x {\left (\frac {2 \, x^{2}}{a} + \frac {3}{a}\right )} \arctan \left (\frac {1}{x}\right )}{3 \, {\left (a x^{2} + a\right )}^{\frac {3}{2}}} - \frac {6 \, a x^{2} + 7 \, a}{9 \, {\left (a x^{2} + a\right )}^{\frac {3}{2}} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(x)/(a*x^2+a)^(5/2),x, algorithm="giac")

[Out]

1/3*x*(2*x^2/a + 3/a)*arctan(1/x)/(a*x^2 + a)^(3/2) - 1/9*(6*a*x^2 + 7*a)/((a*x^2 + a)^(3/2)*a^2)

________________________________________________________________________________________

maple [C]  time = 0.75, size = 165, normalized size = 2.09 \[ -\frac {\left (i+3 \,\mathrm {arccot}\relax (x )\right ) \left (x^{3}+3 i x^{2}-3 x -i\right ) \sqrt {a \left (x +i\right ) \left (x -i\right )}}{72 \left (x^{2}+1\right )^{2} a^{3}}+\frac {3 \left (i+\mathrm {arccot}\relax (x )\right ) \left (x +i\right ) \sqrt {a \left (x +i\right ) \left (x -i\right )}}{8 a^{3} \left (x^{2}+1\right )}+\frac {3 \sqrt {a \left (x +i\right ) \left (x -i\right )}\, \left (x -i\right ) \left (\mathrm {arccot}\relax (x )-i\right )}{8 a^{3} \left (x^{2}+1\right )}-\frac {\left (-i+3 \,\mathrm {arccot}\relax (x )\right ) \sqrt {a \left (x +i\right ) \left (x -i\right )}\, \left (x^{3}-3 i x^{2}-3 x +i\right )}{72 \left (x^{4}+2 x^{2}+1\right ) a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccot(x)/(a*x^2+a)^(5/2),x)

[Out]

-1/72*(I+3*arccot(x))*(3*I*x^2+x^3-I-3*x)*(a*(x+I)*(x-I))^(1/2)/(x^2+1)^2/a^3+3/8*(I+arccot(x))*(x+I)*(a*(x+I)
*(x-I))^(1/2)/a^3/(x^2+1)+3/8*(a*(x+I)*(x-I))^(1/2)*(x-I)*(arccot(x)-I)/a^3/(x^2+1)-1/72*(-I+3*arccot(x))*(a*(
x+I)*(x-I))^(1/2)*(-3*x-3*I*x^2+x^3+I)/(x^4+2*x^2+1)/a^3

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 63, normalized size = 0.80 \[ \frac {1}{3} \, {\left (\frac {2 \, x}{\sqrt {a x^{2} + a} a^{2}} + \frac {x}{{\left (a x^{2} + a\right )}^{\frac {3}{2}} a}\right )} \operatorname {arccot}\relax (x) - \frac {2}{3 \, \sqrt {a x^{2} + a} a^{2}} - \frac {1}{9 \, {\left (a x^{2} + a\right )}^{\frac {3}{2}} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccot(x)/(a*x^2+a)^(5/2),x, algorithm="maxima")

[Out]

1/3*(2*x/(sqrt(a*x^2 + a)*a^2) + x/((a*x^2 + a)^(3/2)*a))*arccot(x) - 2/3/(sqrt(a*x^2 + a)*a^2) - 1/9/((a*x^2
+ a)^(3/2)*a)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\mathrm {acot}\relax (x)}{{\left (a\,x^2+a\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acot(x)/(a + a*x^2)^(5/2),x)

[Out]

int(acot(x)/(a + a*x^2)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {acot}{\relax (x )}}{\left (a \left (x^{2} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acot(x)/(a*x**2+a)**(5/2),x)

[Out]

Integral(acot(x)/(a*(x**2 + 1))**(5/2), x)

________________________________________________________________________________________