3.267 \(\int \frac {(c e+d e x)^2}{(a+b \sin ^{-1}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=280 \[ \frac {\sqrt {\frac {\pi }{2}} e^2 \sin \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {\sqrt {\frac {3 \pi }{2}} e^2 \sin \left (\frac {3 a}{b}\right ) C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {\sqrt {\frac {\pi }{2}} e^2 \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {\sqrt {\frac {3 \pi }{2}} e^2 \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}} \]

[Out]

-1/2*e^2*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/d+1/2*
e^2*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/b^(3/2)/d+1/2*e^2*c
os(3*a/b)*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/b^(3/2)/d-1/2*e^2*Fres
nelC(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/b^(3/2)/d-2*e^2*(d*x+c)^2
*(1-(d*x+c)^2)^(1/2)/b/d/(a+b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.55, antiderivative size = 280, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {4805, 12, 4631, 3306, 3305, 3351, 3304, 3352} \[ \frac {\sqrt {\frac {\pi }{2}} e^2 \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {\sqrt {\frac {3 \pi }{2}} e^2 \sin \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {\sqrt {\frac {\pi }{2}} e^2 \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {\sqrt {\frac {3 \pi }{2}} e^2 \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(-2*e^2*(c + d*x)^2*Sqrt[1 - (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSin[c + d*x]]) - (e^2*Sqrt[Pi/2]*Cos[a/b]*Fresne
lS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(b^(3/2)*d) + (e^2*Sqrt[(3*Pi)/2]*Cos[(3*a)/b]*FresnelS[
(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(b^(3/2)*d) + (e^2*Sqrt[Pi/2]*FresnelC[(Sqrt[2/Pi]*Sqrt[a +
 b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/(b^(3/2)*d) - (e^2*Sqrt[(3*Pi)/2]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcS
in[c + d*x]])/Sqrt[b]]*Sin[(3*a)/b])/(b^(3/2)*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 4631

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 - c^2*x^2]*(a + b*ArcSin
[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n + 1)
, Sin[x]^(m - 1)*(m - (m + 1)*Sin[x]^2), x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && G
eQ[n, -2] && LtQ[n, -1]

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {(c e+d e x)^2}{\left (a+b \sin ^{-1}(c+d x)\right )^{3/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {e^2 x^2}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=\frac {e^2 \operatorname {Subst}\left (\int \frac {x^2}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {\left (2 e^2\right ) \operatorname {Subst}\left (\int \left (-\frac {\sin (x)}{4 \sqrt {a+b x}}+\frac {3 \sin (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {e^2 \operatorname {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}+\frac {\left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {\sin (3 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (e^2 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}+\frac {\left (3 e^2 \cos \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}+\frac {\left (e^2 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}-\frac {\left (3 e^2 \sin \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{2 b d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {\left (e^2 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}+\frac {\left (3 e^2 \cos \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}+\frac {\left (e^2 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}-\frac {\left (3 e^2 \sin \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}\\ &=-\frac {2 e^2 (c+d x)^2 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^2 \sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^2 \sqrt {\frac {\pi }{2}} C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} d}-\frac {e^2 \sqrt {\frac {3 \pi }{2}} C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{b^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.44, size = 380, normalized size = 1.36 \[ \frac {e^2 e^{-\frac {3 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \left (-e^{\frac {3 i a}{b}+2 i \sin ^{-1}(c+d x)}-e^{\frac {3 i a}{b}+4 i \sin ^{-1}(c+d x)}+e^{\frac {3 i \left (a+2 b \sin ^{-1}(c+d x)\right )}{b}}+e^{\frac {2 i a}{b}+3 i \sin ^{-1}(c+d x)} \sqrt {-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )+e^{\frac {4 i a}{b}+3 i \sin ^{-1}(c+d x)} \sqrt {\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-\sqrt {3} e^{3 i \sin ^{-1}(c+d x)} \sqrt {-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},-\frac {3 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-\sqrt {3} e^{3 i \left (\frac {2 a}{b}+\sin ^{-1}(c+d x)\right )} \sqrt {\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},\frac {3 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )+e^{\frac {3 i a}{b}}\right )}{4 b d \sqrt {a+b \sin ^{-1}(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)^2/(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(e^2*(E^(((3*I)*a)/b) - E^(((3*I)*a)/b + (2*I)*ArcSin[c + d*x]) - E^(((3*I)*a)/b + (4*I)*ArcSin[c + d*x]) + E^
(((3*I)*(a + 2*b*ArcSin[c + d*x]))/b) + E^(((2*I)*a)/b + (3*I)*ArcSin[c + d*x])*Sqrt[((-I)*(a + b*ArcSin[c + d
*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcSin[c + d*x]))/b] + E^(((4*I)*a)/b + (3*I)*ArcSin[c + d*x])*Sqrt[(I*(a + b
*ArcSin[c + d*x]))/b]*Gamma[1/2, (I*(a + b*ArcSin[c + d*x]))/b] - Sqrt[3]*E^((3*I)*ArcSin[c + d*x])*Sqrt[((-I)
*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-3*I)*(a + b*ArcSin[c + d*x]))/b] - Sqrt[3]*E^((3*I)*((2*a)/b + ArcS
in[c + d*x]))*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((3*I)*(a + b*ArcSin[c + d*x]))/b]))/(4*b*d*E^(((
3*I)*(a + b*ArcSin[c + d*x]))/b)*Sqrt[a + b*ArcSin[c + d*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.22, size = 320, normalized size = 1.14 \[ -\frac {e^{2} \left (-\sqrt {3}\, \sqrt {\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {3 a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {3}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right )+\sqrt {3}\, \sqrt {\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {3 a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {3}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right )+\sqrt {2}\, \sqrt {\frac {1}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }-\sqrt {2}\, \sqrt {\frac {1}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }+\cos \left (\frac {a +b \arcsin \left (d x +c \right )}{b}-\frac {a}{b}\right )-\cos \left (\frac {3 a +3 b \arcsin \left (d x +c \right )}{b}-\frac {3 a}{b}\right )\right )}{2 d b \sqrt {a +b \arcsin \left (d x +c \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x)

[Out]

-1/2/d*e^2/b*(-3^(1/2)*(1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*cos(3*a/b)*FresnelS(2^(1/2)/Pi^(
1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)+3^(1/2)*(1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(d*x+c))
^(1/2)*sin(3*a/b)*FresnelC(2^(1/2)/Pi^(1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)+2^(1/2)*(1/b)^(1/
2)*(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*Pi^(1
/2)-2^(1/2)*(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d
*x+c))^(1/2)/b)*Pi^(1/2)+cos((a+b*arcsin(d*x+c))/b-a/b)-cos(3*(a+b*arcsin(d*x+c))/b-3*a/b))/(a+b*arcsin(d*x+c)
)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d e x + c e\right )}^{2}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (c\,e+d\,e\,x\right )}^2}{{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(3/2),x)

[Out]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e^{2} \left (\int \frac {c^{2}}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {d^{2} x^{2}}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {2 c d x}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2/(a+b*asin(d*x+c))**(3/2),x)

[Out]

e**2*(Integral(c**2/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(d
**2*x**2/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(2*c*d*x/(a*s
qrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x))

________________________________________________________________________________________