3.266 \(\int \frac {(c e+d e x)^3}{(a+b \sin ^{-1}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=270 \[ -\frac {\sqrt {\frac {\pi }{2}} e^3 \cos \left (\frac {4 a}{b}\right ) C\left (\frac {2 \sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {\sqrt {\pi } e^3 \cos \left (\frac {2 a}{b}\right ) C\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{b^{3/2} d}+\frac {\sqrt {\pi } e^3 \sin \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{b^{3/2} d}-\frac {\sqrt {\frac {\pi }{2}} e^3 \sin \left (\frac {4 a}{b}\right ) S\left (\frac {2 \sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}} \]

[Out]

-1/2*e^3*cos(4*a/b)*FresnelC(2*2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/d-
1/2*e^3*FresnelS(2*2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(4*a/b)*2^(1/2)*Pi^(1/2)/b^(3/2)/d+e
^3*cos(2*a/b)*FresnelC(2*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2)/Pi^(1/2))*Pi^(1/2)/b^(3/2)/d+e^3*FresnelS(2*(a+b*ar
csin(d*x+c))^(1/2)/b^(1/2)/Pi^(1/2))*sin(2*a/b)*Pi^(1/2)/b^(3/2)/d-2*e^3*(d*x+c)^3*(1-(d*x+c)^2)^(1/2)/b/d/(a+
b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.52, antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {4805, 12, 4631, 3306, 3305, 3351, 3304, 3352} \[ -\frac {\sqrt {\frac {\pi }{2}} e^3 \cos \left (\frac {4 a}{b}\right ) \text {FresnelC}\left (\frac {2 \sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {\sqrt {\pi } e^3 \cos \left (\frac {2 a}{b}\right ) \text {FresnelC}\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {\pi } \sqrt {b}}\right )}{b^{3/2} d}+\frac {\sqrt {\pi } e^3 \sin \left (\frac {2 a}{b}\right ) S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{b^{3/2} d}-\frac {\sqrt {\frac {\pi }{2}} e^3 \sin \left (\frac {4 a}{b}\right ) S\left (\frac {2 \sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}-\frac {2 e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^3/(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(-2*e^3*(c + d*x)^3*Sqrt[1 - (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSin[c + d*x]]) - (e^3*Sqrt[Pi/2]*Cos[(4*a)/b]*Fr
esnelC[(2*Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(b^(3/2)*d) + (e^3*Sqrt[Pi]*Cos[(2*a)/b]*FresnelC[
(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])])/(b^(3/2)*d) + (e^3*Sqrt[Pi]*FresnelS[(2*Sqrt[a + b*ArcSin
[c + d*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/(b^(3/2)*d) - (e^3*Sqrt[Pi/2]*FresnelS[(2*Sqrt[2/Pi]*Sqrt[a + b*
ArcSin[c + d*x]])/Sqrt[b]]*Sin[(4*a)/b])/(b^(3/2)*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 4631

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 - c^2*x^2]*(a + b*ArcSin
[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n + 1)
, Sin[x]^(m - 1)*(m - (m + 1)*Sin[x]^2), x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && G
eQ[n, -2] && LtQ[n, -1]

Rule 4805

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {(c e+d e x)^3}{\left (a+b \sin ^{-1}(c+d x)\right )^{3/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {e^3 x^3}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=\frac {e^3 \operatorname {Subst}\left (\int \frac {x^3}{\left (a+b \sin ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {\left (2 e^3\right ) \operatorname {Subst}\left (\int \left (\frac {\cos (2 x)}{2 \sqrt {a+b x}}-\frac {\cos (4 x)}{2 \sqrt {a+b x}}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {e^3 \operatorname {Subst}\left (\int \frac {\cos (2 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}-\frac {e^3 \operatorname {Subst}\left (\int \frac {\cos (4 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {\left (e^3 \cos \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {2 a}{b}+2 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}-\frac {\left (e^3 \cos \left (\frac {4 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {4 a}{b}+4 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}+\frac {\left (e^3 \sin \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {2 a}{b}+2 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}-\frac {\left (e^3 \sin \left (\frac {4 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {4 a}{b}+4 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{b d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}+\frac {\left (2 e^3 \cos \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}-\frac {\left (2 e^3 \cos \left (\frac {4 a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {4 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}+\frac {\left (2 e^3 \sin \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}-\frac {\left (2 e^3 \sin \left (\frac {4 a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {4 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{b^2 d}\\ &=-\frac {2 e^3 (c+d x)^3 \sqrt {1-(c+d x)^2}}{b d \sqrt {a+b \sin ^{-1}(c+d x)}}-\frac {e^3 \sqrt {\frac {\pi }{2}} \cos \left (\frac {4 a}{b}\right ) C\left (\frac {2 \sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d}+\frac {e^3 \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) C\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{b^{3/2} d}+\frac {e^3 \sqrt {\pi } S\left (\frac {2 \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{b^{3/2} d}-\frac {e^3 \sqrt {\frac {\pi }{2}} S\left (\frac {2 \sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {4 a}{b}\right )}{b^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.35, size = 300, normalized size = 1.11 \[ -\frac {i e^3 e^{-\frac {4 i a}{b}} \left (-2 i e^{\frac {4 i a}{b}} \sin \left (2 \sin ^{-1}(c+d x)\right )+i e^{\frac {4 i a}{b}} \sin \left (4 \sin ^{-1}(c+d x)\right )+\sqrt {2} e^{\frac {2 i a}{b}} \sqrt {-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},-\frac {2 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-\sqrt {2} e^{\frac {6 i a}{b}} \sqrt {\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},\frac {2 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )-\sqrt {-\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},-\frac {4 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )+e^{\frac {8 i a}{b}} \sqrt {\frac {i \left (a+b \sin ^{-1}(c+d x)\right )}{b}} \Gamma \left (\frac {1}{2},\frac {4 i \left (a+b \sin ^{-1}(c+d x)\right )}{b}\right )\right )}{4 b d \sqrt {a+b \sin ^{-1}(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)^3/(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

((-1/4*I)*e^3*(Sqrt[2]*E^(((2*I)*a)/b)*Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-2*I)*(a + b*ArcSin
[c + d*x]))/b] - Sqrt[2]*E^(((6*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((2*I)*(a + b*ArcSin[c
 + d*x]))/b] - Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-4*I)*(a + b*ArcSin[c + d*x]))/b] + E^(((8*
I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((4*I)*(a + b*ArcSin[c + d*x]))/b] - (2*I)*E^(((4*I)*a
)/b)*Sin[2*ArcSin[c + d*x]] + I*E^(((4*I)*a)/b)*Sin[4*ArcSin[c + d*x]]))/(b*d*E^(((4*I)*a)/b)*Sqrt[a + b*ArcSi
n[c + d*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d e x + c e\right )}^{3}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^3/(b*arcsin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.23, size = 307, normalized size = 1.14 \[ -\frac {e^{3} \left (2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {4 a}{b}\right ) \FresnelC \left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }\, \sqrt {\frac {1}{b}}+2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {4 a}{b}\right ) \mathrm {S}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }\, \sqrt {\frac {1}{b}}-4 \sqrt {\frac {1}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {2 a}{b}\right ) \FresnelC \left (\frac {2 \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }-4 \sqrt {\frac {1}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {2 a}{b}\right ) \mathrm {S}\left (\frac {2 \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {\pi }+2 \sin \left (\frac {2 a +2 b \arcsin \left (d x +c \right )}{b}-\frac {2 a}{b}\right )-\sin \left (\frac {4 a +4 b \arcsin \left (d x +c \right )}{b}-\frac {4 a}{b}\right )\right )}{4 d b \sqrt {a +b \arcsin \left (d x +c \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^(3/2),x)

[Out]

-1/4/d*e^3/b*(2*2^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*cos(4*a/b)*FresnelC(2*2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcs
in(d*x+c))^(1/2)/b)*Pi^(1/2)*(1/b)^(1/2)+2*2^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*sin(4*a/b)*FresnelS(2*2^(1/2)/Pi^
(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*Pi^(1/2)*(1/b)^(1/2)-4*(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*co
s(2*a/b)*FresnelC(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*Pi^(1/2)-4*(1/b)^(1/2)*(a+b*arcsin(d*x+c
))^(1/2)*sin(2*a/b)*FresnelS(2/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*Pi^(1/2)+2*sin(2*(a+b*arcsin(
d*x+c))/b-2*a/b)-sin(4*(a+b*arcsin(d*x+c))/b-4*a/b))/(a+b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d e x + c e\right )}^{3}}{{\left (b \arcsin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^3/(b*arcsin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (c\,e+d\,e\,x\right )}^3}{{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^3/(a + b*asin(c + d*x))^(3/2),x)

[Out]

int((c*e + d*e*x)^3/(a + b*asin(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ e^{3} \left (\int \frac {c^{3}}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {d^{3} x^{3}}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {3 c d^{2} x^{2}}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx + \int \frac {3 c^{2} d x}{a \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**3/(a+b*asin(d*x+c))**(3/2),x)

[Out]

e**3*(Integral(c**3/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(d
**3*x**3/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(3*c*d**2*x**
2/(a*sqrt(a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x) + Integral(3*c**2*d*x/(a*sqrt(
a + b*asin(c + d*x)) + b*sqrt(a + b*asin(c + d*x))*asin(c + d*x)), x))

________________________________________________________________________________________