3.25 \(\int \frac {1}{(d+e x) (a+b \sin ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=21 \[ \text {Int}\left (\frac {1}{(d+e x) \left (a+b \sin ^{-1}(c x)\right )^2},x\right ) \]

[Out]

Unintegrable(1/(e*x+d)/(a+b*arcsin(c*x))^2,x)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {1}{(d+e x) \left (a+b \sin ^{-1}(c x)\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Int[1/((d + e*x)*(a + b*ArcSin[c*x])^2),x]

[Out]

Defer[Int][1/((d + e*x)*(a + b*ArcSin[c*x])^2), x]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x) \left (a+b \sin ^{-1}(c x)\right )^2} \, dx &=\int \frac {1}{(d+e x) \left (a+b \sin ^{-1}(c x)\right )^2} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 6.50, size = 0, normalized size = 0.00 \[ \int \frac {1}{(d+e x) \left (a+b \sin ^{-1}(c x)\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[1/((d + e*x)*(a + b*ArcSin[c*x])^2),x]

[Out]

Integrate[1/((d + e*x)*(a + b*ArcSin[c*x])^2), x]

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{a^{2} e x + a^{2} d + {\left (b^{2} e x + b^{2} d\right )} \arcsin \left (c x\right )^{2} + 2 \, {\left (a b e x + a b d\right )} \arcsin \left (c x\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral(1/(a^2*e*x + a^2*d + (b^2*e*x + b^2*d)*arcsin(c*x)^2 + 2*(a*b*e*x + a*b*d)*arcsin(c*x)), x)

________________________________________________________________________________________

giac [A]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (e x + d\right )} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

integrate(1/((e*x + d)*(b*arcsin(c*x) + a)^2), x)

________________________________________________________________________________________

maple [A]  time = 5.95, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (e x +d \right ) \left (a +b \arcsin \left (c x \right )\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(a+b*arcsin(c*x))^2,x)

[Out]

int(1/(e*x+d)/(a+b*arcsin(c*x))^2,x)

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [A]  time = 0.00, size = -1, normalized size = -0.05 \[ \int \frac {1}{{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,\left (d+e\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*asin(c*x))^2*(d + e*x)),x)

[Out]

int(1/((a + b*asin(c*x))^2*(d + e*x)), x)

________________________________________________________________________________________

sympy [A]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2} \left (d + e x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(a+b*asin(c*x))**2,x)

[Out]

Integral(1/((a + b*asin(c*x))**2*(d + e*x)), x)

________________________________________________________________________________________