3.235 \(\int \frac {(c (a+b x^2)^2)^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=134 \[ -\frac {a^3 c \sqrt {c \left (a+b x^2\right )^2}}{x \left (a+b x^2\right )}+\frac {3 a^2 b c x \sqrt {c \left (a+b x^2\right )^2}}{a+b x^2}+\frac {b^3 c x^5 \sqrt {c \left (a+b x^2\right )^2}}{5 \left (a+b x^2\right )}+\frac {a b^2 c x^3 \sqrt {c \left (a+b x^2\right )^2}}{a+b x^2} \]

[Out]

-a^3*c*(c*(b*x^2+a)^2)^(1/2)/x/(b*x^2+a)+3*a^2*b*c*x*(c*(b*x^2+a)^2)^(1/2)/(b*x^2+a)+a*b^2*c*x^3*(c*(b*x^2+a)^
2)^(1/2)/(b*x^2+a)+1/5*b^3*c*x^5*(c*(b*x^2+a)^2)^(1/2)/(b*x^2+a)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 178, normalized size of antiderivative = 1.33, number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {1989, 1112, 270} \[ \frac {b^3 c x^5 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{5 \left (a+b x^2\right )}+\frac {a b^2 c x^3 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{a+b x^2}+\frac {3 a^2 b c x \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{a+b x^2}-\frac {a^3 c \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{x \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(c*(a + b*x^2)^2)^(3/2)/x^2,x]

[Out]

-((a^3*c*Sqrt[a^2*c + 2*a*b*c*x^2 + b^2*c*x^4])/(x*(a + b*x^2))) + (3*a^2*b*c*x*Sqrt[a^2*c + 2*a*b*c*x^2 + b^2
*c*x^4])/(a + b*x^2) + (a*b^2*c*x^3*Sqrt[a^2*c + 2*a*b*c*x^2 + b^2*c*x^4])/(a + b*x^2) + (b^3*c*x^5*Sqrt[a^2*c
 + 2*a*b*c*x^2 + b^2*c*x^4])/(5*(a + b*x^2))

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 1989

Int[(u_)^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Int[(d*x)^m*ExpandToSum[u, x]^p, x] /; FreeQ[{d, m, p}, x] &&
TrinomialQ[u, x] &&  !TrinomialMatchQ[u, x]

Rubi steps

\begin {align*} \int \frac {\left (c \left (a+b x^2\right )^2\right )^{3/2}}{x^2} \, dx &=\int \frac {\left (a^2 c+2 a b c x^2+b^2 c x^4\right )^{3/2}}{x^2} \, dx\\ &=\frac {\sqrt {a^2 c+2 a b c x^2+b^2 c x^4} \int \frac {\left (a b c+b^2 c x^2\right )^3}{x^2} \, dx}{b^2 c \left (a b c+b^2 c x^2\right )}\\ &=\frac {\sqrt {a^2 c+2 a b c x^2+b^2 c x^4} \int \left (3 a^2 b^4 c^3+\frac {a^3 b^3 c^3}{x^2}+3 a b^5 c^3 x^2+b^6 c^3 x^4\right ) \, dx}{b^2 c \left (a b c+b^2 c x^2\right )}\\ &=-\frac {a^3 c \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{x \left (a+b x^2\right )}+\frac {3 a^2 b c x \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{a+b x^2}+\frac {a b^2 c x^3 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{a+b x^2}+\frac {b^3 c x^5 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{5 \left (a+b x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 62, normalized size = 0.46 \[ \frac {\left (-5 a^3+15 a^2 b x^2+5 a b^2 x^4+b^3 x^6\right ) \left (c \left (a+b x^2\right )^2\right )^{3/2}}{5 x \left (a+b x^2\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*(a + b*x^2)^2)^(3/2)/x^2,x]

[Out]

((c*(a + b*x^2)^2)^(3/2)*(-5*a^3 + 15*a^2*b*x^2 + 5*a*b^2*x^4 + b^3*x^6))/(5*x*(a + b*x^2)^3)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 72, normalized size = 0.54 \[ \frac {{\left (b^{3} c x^{6} + 5 \, a b^{2} c x^{4} + 15 \, a^{2} b c x^{2} - 5 \, a^{3} c\right )} \sqrt {b^{2} c x^{4} + 2 \, a b c x^{2} + a^{2} c}}{5 \, {\left (b x^{3} + a x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x^2+a)^2)^(3/2)/x^2,x, algorithm="fricas")

[Out]

1/5*(b^3*c*x^6 + 5*a*b^2*c*x^4 + 15*a^2*b*c*x^2 - 5*a^3*c)*sqrt(b^2*c*x^4 + 2*a*b*c*x^2 + a^2*c)/(b*x^3 + a*x)

________________________________________________________________________________________

giac [A]  time = 0.24, size = 69, normalized size = 0.51 \[ \frac {1}{5} \, {\left (b^{3} x^{5} \mathrm {sgn}\left (b x^{2} + a\right ) + 5 \, a b^{2} x^{3} \mathrm {sgn}\left (b x^{2} + a\right ) + 15 \, a^{2} b x \mathrm {sgn}\left (b x^{2} + a\right ) - \frac {5 \, a^{3} \mathrm {sgn}\left (b x^{2} + a\right )}{x}\right )} c^{\frac {3}{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x^2+a)^2)^(3/2)/x^2,x, algorithm="giac")

[Out]

1/5*(b^3*x^5*sgn(b*x^2 + a) + 5*a*b^2*x^3*sgn(b*x^2 + a) + 15*a^2*b*x*sgn(b*x^2 + a) - 5*a^3*sgn(b*x^2 + a)/x)
*c^(3/2)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 60, normalized size = 0.45 \[ -\frac {\left (-b^{3} x^{6}-5 a \,b^{2} x^{4}-15 a^{2} b \,x^{2}+5 a^{3}\right ) \left (\left (b \,x^{2}+a \right )^{2} c \right )^{\frac {3}{2}}}{5 \left (b \,x^{2}+a \right )^{3} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x^2+a)^2*c)^(3/2)/x^2,x)

[Out]

-1/5*(-b^3*x^6-5*a*b^2*x^4-15*a^2*b*x^2+5*a^3)*((b*x^2+a)^2*c)^(3/2)/x/(b*x^2+a)^3

________________________________________________________________________________________

maxima [A]  time = 0.97, size = 48, normalized size = 0.36 \[ \frac {b^{3} c^{\frac {3}{2}} x^{6} + 5 \, a b^{2} c^{\frac {3}{2}} x^{4} + 15 \, a^{2} b c^{\frac {3}{2}} x^{2} - 5 \, a^{3} c^{\frac {3}{2}}}{5 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x^2+a)^2)^(3/2)/x^2,x, algorithm="maxima")

[Out]

1/5*(b^3*c^(3/2)*x^6 + 5*a*b^2*c^(3/2)*x^4 + 15*a^2*b*c^(3/2)*x^2 - 5*a^3*c^(3/2))/x

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c\,{\left (b\,x^2+a\right )}^2\right )}^{3/2}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(a + b*x^2)^2)^(3/2)/x^2,x)

[Out]

int((c*(a + b*x^2)^2)^(3/2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (c \left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x**2+a)**2)**(3/2)/x**2,x)

[Out]

Integral((c*(a + b*x**2)**2)**(3/2)/x**2, x)

________________________________________________________________________________________