3.234 \(\int \frac {(c (a+b x^2)^2)^{3/2}}{x} \, dx\)

Optimal. Leaf size=139 \[ \frac {a^3 c \log (x) \sqrt {c \left (a+b x^2\right )^2}}{a+b x^2}+\frac {3 a^2 b c x^2 \sqrt {c \left (a+b x^2\right )^2}}{2 \left (a+b x^2\right )}+\frac {b^3 c x^6 \sqrt {c \left (a+b x^2\right )^2}}{6 \left (a+b x^2\right )}+\frac {3 a b^2 c x^4 \sqrt {c \left (a+b x^2\right )^2}}{4 \left (a+b x^2\right )} \]

[Out]

3/2*a^2*b*c*x^2*(c*(b*x^2+a)^2)^(1/2)/(b*x^2+a)+3/4*a*b^2*c*x^4*(c*(b*x^2+a)^2)^(1/2)/(b*x^2+a)+1/6*b^3*c*x^6*
(c*(b*x^2+a)^2)^(1/2)/(b*x^2+a)+a^3*c*ln(x)*(c*(b*x^2+a)^2)^(1/2)/(b*x^2+a)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 183, normalized size of antiderivative = 1.32, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {1989, 1112, 266, 43} \[ \frac {b^3 c x^6 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{6 \left (a+b x^2\right )}+\frac {3 a b^2 c x^4 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{4 \left (a+b x^2\right )}+\frac {3 a^2 b c x^2 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{2 \left (a+b x^2\right )}+\frac {a^3 c \log (x) \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{a+b x^2} \]

Antiderivative was successfully verified.

[In]

Int[(c*(a + b*x^2)^2)^(3/2)/x,x]

[Out]

(3*a^2*b*c*x^2*Sqrt[a^2*c + 2*a*b*c*x^2 + b^2*c*x^4])/(2*(a + b*x^2)) + (3*a*b^2*c*x^4*Sqrt[a^2*c + 2*a*b*c*x^
2 + b^2*c*x^4])/(4*(a + b*x^2)) + (b^3*c*x^6*Sqrt[a^2*c + 2*a*b*c*x^2 + b^2*c*x^4])/(6*(a + b*x^2)) + (a^3*c*S
qrt[a^2*c + 2*a*b*c*x^2 + b^2*c*x^4]*Log[x])/(a + b*x^2)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 1989

Int[(u_)^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Int[(d*x)^m*ExpandToSum[u, x]^p, x] /; FreeQ[{d, m, p}, x] &&
TrinomialQ[u, x] &&  !TrinomialMatchQ[u, x]

Rubi steps

\begin {align*} \int \frac {\left (c \left (a+b x^2\right )^2\right )^{3/2}}{x} \, dx &=\int \frac {\left (a^2 c+2 a b c x^2+b^2 c x^4\right )^{3/2}}{x} \, dx\\ &=\frac {\sqrt {a^2 c+2 a b c x^2+b^2 c x^4} \int \frac {\left (a b c+b^2 c x^2\right )^3}{x} \, dx}{b^2 c \left (a b c+b^2 c x^2\right )}\\ &=\frac {\sqrt {a^2 c+2 a b c x^2+b^2 c x^4} \operatorname {Subst}\left (\int \frac {\left (a b c+b^2 c x\right )^3}{x} \, dx,x,x^2\right )}{2 b^2 c \left (a b c+b^2 c x^2\right )}\\ &=\frac {\sqrt {a^2 c+2 a b c x^2+b^2 c x^4} \operatorname {Subst}\left (\int \left (3 a^2 b^4 c^3+\frac {a^3 b^3 c^3}{x}+3 a b^5 c^3 x+b^6 c^3 x^2\right ) \, dx,x,x^2\right )}{2 b^2 c \left (a b c+b^2 c x^2\right )}\\ &=\frac {3 a^2 b c x^2 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{2 \left (a+b x^2\right )}+\frac {3 a b^2 c x^4 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{4 \left (a+b x^2\right )}+\frac {b^3 c x^6 \sqrt {a^2 c+2 a b c x^2+b^2 c x^4}}{6 \left (a+b x^2\right )}+\frac {a^3 c \sqrt {a^2 c+2 a b c x^2+b^2 c x^4} \log (x)}{a+b x^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 62, normalized size = 0.45 \[ \frac {\left (c \left (a+b x^2\right )^2\right )^{3/2} \left (12 a^3 \log (x)+b x^2 \left (18 a^2+9 a b x^2+2 b^2 x^4\right )\right )}{12 \left (a+b x^2\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*(a + b*x^2)^2)^(3/2)/x,x]

[Out]

((c*(a + b*x^2)^2)^(3/2)*(b*x^2*(18*a^2 + 9*a*b*x^2 + 2*b^2*x^4) + 12*a^3*Log[x]))/(12*(a + b*x^2)^3)

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 73, normalized size = 0.53 \[ \frac {{\left (2 \, b^{3} c x^{6} + 9 \, a b^{2} c x^{4} + 18 \, a^{2} b c x^{2} + 12 \, a^{3} c \log \relax (x)\right )} \sqrt {b^{2} c x^{4} + 2 \, a b c x^{2} + a^{2} c}}{12 \, {\left (b x^{2} + a\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x^2+a)^2)^(3/2)/x,x, algorithm="fricas")

[Out]

1/12*(2*b^3*c*x^6 + 9*a*b^2*c*x^4 + 18*a^2*b*c*x^2 + 12*a^3*c*log(x))*sqrt(b^2*c*x^4 + 2*a*b*c*x^2 + a^2*c)/(b
*x^2 + a)

________________________________________________________________________________________

giac [A]  time = 0.35, size = 73, normalized size = 0.53 \[ \frac {1}{12} \, {\left (2 \, b^{3} x^{6} \mathrm {sgn}\left (b x^{2} + a\right ) + 9 \, a b^{2} x^{4} \mathrm {sgn}\left (b x^{2} + a\right ) + 18 \, a^{2} b x^{2} \mathrm {sgn}\left (b x^{2} + a\right ) + 6 \, a^{3} \log \left (x^{2}\right ) \mathrm {sgn}\left (b x^{2} + a\right )\right )} c^{\frac {3}{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x^2+a)^2)^(3/2)/x,x, algorithm="giac")

[Out]

1/12*(2*b^3*x^6*sgn(b*x^2 + a) + 9*a*b^2*x^4*sgn(b*x^2 + a) + 18*a^2*b*x^2*sgn(b*x^2 + a) + 6*a^3*log(x^2)*sgn
(b*x^2 + a))*c^(3/2)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 59, normalized size = 0.42 \[ \frac {\left (\left (b \,x^{2}+a \right )^{2} c \right )^{\frac {3}{2}} \left (2 b^{3} x^{6}+9 a \,b^{2} x^{4}+18 a^{2} b \,x^{2}+12 a^{3} \ln \relax (x )\right )}{12 \left (b \,x^{2}+a \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x^2+a)^2*c)^(3/2)/x,x)

[Out]

1/12*((b*x^2+a)^2*c)^(3/2)*(2*b^3*x^6+9*a*b^2*x^4+18*a^2*b*x^2+12*a^3*ln(x))/(b*x^2+a)^3

________________________________________________________________________________________

maxima [A]  time = 0.98, size = 171, normalized size = 1.23 \[ \frac {1}{2} \, \left (-1\right )^{2 \, b^{2} c x^{2} + 2 \, a b c} a^{3} c^{\frac {3}{2}} \log \left (2 \, b^{2} c x^{2} + 2 \, a b c\right ) - \frac {1}{2} \, \left (-1\right )^{2 \, a b c x^{2} + 2 \, a^{2} c} a^{3} c^{\frac {3}{2}} \log \left (2 \, a b c + \frac {2 \, a^{2} c}{x^{2}}\right ) + \frac {1}{4} \, \sqrt {b^{2} c x^{4} + 2 \, a b c x^{2} + a^{2} c} a b c x^{2} + \frac {3}{4} \, \sqrt {b^{2} c x^{4} + 2 \, a b c x^{2} + a^{2} c} a^{2} c + \frac {1}{6} \, {\left (b^{2} c x^{4} + 2 \, a b c x^{2} + a^{2} c\right )}^{\frac {3}{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x^2+a)^2)^(3/2)/x,x, algorithm="maxima")

[Out]

1/2*(-1)^(2*b^2*c*x^2 + 2*a*b*c)*a^3*c^(3/2)*log(2*b^2*c*x^2 + 2*a*b*c) - 1/2*(-1)^(2*a*b*c*x^2 + 2*a^2*c)*a^3
*c^(3/2)*log(2*a*b*c + 2*a^2*c/x^2) + 1/4*sqrt(b^2*c*x^4 + 2*a*b*c*x^2 + a^2*c)*a*b*c*x^2 + 3/4*sqrt(b^2*c*x^4
 + 2*a*b*c*x^2 + a^2*c)*a^2*c + 1/6*(b^2*c*x^4 + 2*a*b*c*x^2 + a^2*c)^(3/2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c\,{\left (b\,x^2+a\right )}^2\right )}^{3/2}}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(a + b*x^2)^2)^(3/2)/x,x)

[Out]

int((c*(a + b*x^2)^2)^(3/2)/x, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (c \left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(b*x**2+a)**2)**(3/2)/x,x)

[Out]

Integral((c*(a + b*x**2)**2)**(3/2)/x, x)

________________________________________________________________________________________