Optimal. Leaf size=29 \[ \left (e^8+\frac {16}{x^4}-x+\frac {e^2+x}{5+x}-\log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 2.23, antiderivative size = 518, normalized size of antiderivative = 17.86, number of steps used = 22, number of rules used = 11, integrand size = 259, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6, 6688, 12, 6742, 1620, 2357, 2295, 2304, 2301, 2314, 31} \begin {gather*} \frac {256}{x^8}+\frac {32 e^2 \left (1+5 e^6\right )}{5 x^4}-\frac {32 \log (x)}{x^4}-\frac {128 \left (4-e^8\right )}{15 x^3}-\frac {128 e^2 \left (1+5 e^6\right )}{75 x^3}+\frac {32 \left (1811+125 e^2\right )}{9375 x^3}+\frac {22048}{9375 x^3}+x^2+\frac {64 \left (4-e^8\right )}{25 x^2}+\frac {64 e^2 \left (1+5 e^6\right )}{125 x^2}+\frac {16 \left (1811+125 e^2\right )}{15625 x^2}-\frac {48 \left (187+125 e^2\right )}{15625 x^2}-\frac {64}{5 x^2}+2 \left (4-e^8\right ) x-10 x+\frac {2 \left (5-e^2\right ) \left (2-e^4\right ) \left (2+e^4\right )}{x+5}-\frac {12532 \left (5-e^2\right )}{625 (x+5)}-\frac {e^2 \left (5-e^2\right ) \left (1+5 e^6\right )}{(x+5)^2}-\frac {5 \left (5-e^2\right ) \left (2-e^4\right ) \left (2+e^4\right )}{(x+5)^2}+\frac {25 \left (5-e^2\right )}{(x+5)^2}-\frac {128 \left (4-e^8\right )}{125 x}-\frac {128 e^2 \left (1+5 e^6\right )}{625 x}-\frac {96 \left (187+125 e^2\right )}{78125 x}-\frac {192 \left (219-125 e^2\right )}{78125 x}+\frac {128}{25 x}+\log ^2(x)-\frac {2 \left (5-e^2\right ) x \log (x)}{5 (x+5)}+2 x \log (x)-\frac {128}{625} \left (4-e^8\right ) \log (x)-\frac {1378 e^2 \left (1+5 e^6\right ) \log (x)}{3125}+\frac {192 \left (219-125 e^2\right ) \log (x)}{390625}-\frac {64 \left (1907-625 e^2\right ) \log (x)}{390625}+\frac {128 \log (x)}{125}-\frac {4872}{625} \left (4-e^8\right ) \log (x+5)-\frac {4872 e^2 \left (1+5 e^6\right ) \log (x+5)}{3125}+\frac {2}{125} \left (1811+125 e^2\right ) \log (x+5)+\frac {2}{5} \left (5-e^2\right ) \log (x+5)-\frac {192 \left (219-125 e^2\right ) \log (x+5)}{390625}+\frac {64 \left (1907-625 e^2\right ) \log (x+5)}{390625} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 31
Rule 1620
Rule 2295
Rule 2301
Rule 2304
Rule 2314
Rule 2357
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-256000-153600 x-30720 x^2-2048 x^3-4000 x^4+7200 x^5+5600 x^6+1280 x^7+96 x^8+\left (200-2 e^4\right ) x^9+290 x^{10}+148 x^{11}+30 x^{12}+2 x^{13}+e^2 \left (-3200 x^4-1440 x^5-160 x^6-50 x^8-60 x^9-14 x^{10}\right )+e^8 \left (-16000 x^4-9600 x^5-1920 x^6-128 x^7-250 x^8-350 x^9-170 x^{10}-32 x^{11}-2 x^{12}+e^2 \left (-10 x^9-2 x^{10}\right )\right )+\left (16000 x^4+9600 x^5+1920 x^6+128 x^7+250 x^8+350 x^9+170 x^{10}+32 x^{11}+2 x^{12}+e^2 \left (10 x^9+2 x^{10}\right )\right ) \log (x)}{125 x^9+75 x^{10}+15 x^{11}+x^{12}} \, dx\\ &=\int \frac {2 \left (1600+640 x+64 x^2+25 x^4+\left (30+e^2\right ) x^5+11 x^6+x^7\right ) \left (-80-16 x-\left (e^2+5 e^8\right ) x^4-\left (-4+e^8\right ) x^5+x^6+x^4 (5+x) \log (x)\right )}{x^9 (5+x)^3} \, dx\\ &=2 \int \frac {\left (1600+640 x+64 x^2+25 x^4+\left (30+e^2\right ) x^5+11 x^6+x^7\right ) \left (-80-16 x-\left (e^2+5 e^8\right ) x^4-\left (-4+e^8\right ) x^5+x^6+x^4 (5+x) \log (x)\right )}{x^9 (5+x)^3} \, dx\\ &=2 \int \left (\frac {80 \left (-1600-640 x-64 x^2-25 x^4-30 \left (1+\frac {e^2}{30}\right ) x^5-11 x^6-x^7\right )}{x^9 (5+x)^3}+\frac {16 \left (-1600-640 x-64 x^2-25 x^4-30 \left (1+\frac {e^2}{30}\right ) x^5-11 x^6-x^7\right )}{x^8 (5+x)^3}+\frac {e^2 \left (1+5 e^6\right ) \left (-1600-640 x-64 x^2-25 x^4-30 \left (1+\frac {e^2}{30}\right ) x^5-11 x^6-x^7\right )}{x^5 (5+x)^3}+\frac {\left (2-e^4\right ) \left (2+e^4\right ) \left (1600+640 x+64 x^2+25 x^4+30 \left (1+\frac {e^2}{30}\right ) x^5+11 x^6+x^7\right )}{x^4 (5+x)^3}+\frac {1600+640 x+64 x^2+25 x^4+30 \left (1+\frac {e^2}{30}\right ) x^5+11 x^6+x^7}{x^3 (5+x)^3}+\frac {\left (1600+640 x+64 x^2+25 x^4+30 \left (1+\frac {e^2}{30}\right ) x^5+11 x^6+x^7\right ) \log (x)}{x^5 (5+x)^2}\right ) \, dx\\ &=2 \int \frac {1600+640 x+64 x^2+25 x^4+30 \left (1+\frac {e^2}{30}\right ) x^5+11 x^6+x^7}{x^3 (5+x)^3} \, dx+2 \int \frac {\left (1600+640 x+64 x^2+25 x^4+30 \left (1+\frac {e^2}{30}\right ) x^5+11 x^6+x^7\right ) \log (x)}{x^5 (5+x)^2} \, dx+32 \int \frac {-1600-640 x-64 x^2-25 x^4-30 \left (1+\frac {e^2}{30}\right ) x^5-11 x^6-x^7}{x^8 (5+x)^3} \, dx+160 \int \frac {-1600-640 x-64 x^2-25 x^4-30 \left (1+\frac {e^2}{30}\right ) x^5-11 x^6-x^7}{x^9 (5+x)^3} \, dx+\left (2 e^2 \left (1+5 e^6\right )\right ) \int \frac {-1600-640 x-64 x^2-25 x^4-30 \left (1+\frac {e^2}{30}\right ) x^5-11 x^6-x^7}{x^5 (5+x)^3} \, dx+\left (2 \left (4-e^8\right )\right ) \int \frac {1600+640 x+64 x^2+25 x^4+30 \left (1+\frac {e^2}{30}\right ) x^5+11 x^6+x^7}{x^4 (5+x)^3} \, dx\\ &=2 \int \left (-4+\frac {64}{5 x^3}-\frac {64}{25 x^2}+\frac {64}{125 x}+x+\frac {25 \left (-5+e^2\right )}{(5+x)^3}-\frac {10 \left (-5+e^2\right )}{(5+x)^2}+\frac {1811+125 e^2}{125 (5+x)}\right ) \, dx+2 \int \left (\log (x)+\frac {64 \log (x)}{x^5}+\frac {\log (x)}{x}+\frac {\left (-5+e^2\right ) \log (x)}{(5+x)^2}\right ) \, dx+32 \int \left (-\frac {64}{5 x^8}+\frac {64}{25 x^7}-\frac {64}{125 x^6}+\frac {64}{625 x^5}-\frac {689}{3125 x^4}+\frac {-1811-125 e^2}{15625 x^3}+\frac {3 \left (187+125 e^2\right )}{78125 x^2}-\frac {6 \left (-219+125 e^2\right )}{390625 x}+\frac {-5+e^2}{125 (5+x)^3}+\frac {3 \left (-5+e^2\right )}{625 (5+x)^2}+\frac {6 \left (-219+125 e^2\right )}{390625 (5+x)}\right ) \, dx+160 \int \left (-\frac {64}{5 x^9}+\frac {64}{25 x^8}-\frac {64}{125 x^7}+\frac {64}{625 x^6}-\frac {689}{3125 x^5}+\frac {-1811-125 e^2}{15625 x^4}+\frac {3 \left (187+125 e^2\right )}{78125 x^3}-\frac {6 \left (-219+125 e^2\right )}{390625 x^2}+\frac {2 \left (-1907+625 e^2\right )}{1953125 x}+\frac {5-e^2}{625 (5+x)^3}-\frac {4 \left (-5+e^2\right )}{3125 (5+x)^2}-\frac {2 \left (-1907+625 e^2\right )}{1953125 (5+x)}\right ) \, dx+\left (2 e^2 \left (1+5 e^6\right )\right ) \int \left (-\frac {64}{5 x^5}+\frac {64}{25 x^4}-\frac {64}{125 x^3}+\frac {64}{625 x^2}-\frac {689}{3125 x}+\frac {5-e^2}{(5+x)^3}-\frac {2436}{3125 (5+x)}\right ) \, dx+\left (2 \left (4-e^8\right )\right ) \int \left (1+\frac {64}{5 x^4}-\frac {64}{25 x^3}+\frac {64}{125 x^2}-\frac {64}{625 x}-\frac {5 \left (-5+e^2\right )}{(5+x)^3}+\frac {-5+e^2}{(5+x)^2}-\frac {2436}{625 (5+x)}\right ) \, dx\\ &=\frac {256}{x^8}+\frac {8}{x^4}+\frac {32 e^2 \left (1+5 e^6\right )}{5 x^4}+\frac {22048}{9375 x^3}+\frac {32 \left (1811+125 e^2\right )}{9375 x^3}-\frac {128 e^2 \left (1+5 e^6\right )}{75 x^3}-\frac {128 \left (4-e^8\right )}{15 x^3}-\frac {64}{5 x^2}-\frac {48 \left (187+125 e^2\right )}{15625 x^2}+\frac {16 \left (1811+125 e^2\right )}{15625 x^2}+\frac {64 e^2 \left (1+5 e^6\right )}{125 x^2}+\frac {64 \left (4-e^8\right )}{25 x^2}+\frac {128}{25 x}-\frac {192 \left (219-125 e^2\right )}{78125 x}-\frac {96 \left (187+125 e^2\right )}{78125 x}-\frac {128 e^2 \left (1+5 e^6\right )}{625 x}-\frac {128 \left (4-e^8\right )}{125 x}-8 x+2 \left (4-e^8\right ) x+x^2+\frac {25 \left (5-e^2\right )}{(5+x)^2}-\frac {e^2 \left (5-e^2\right ) \left (1+5 e^6\right )}{(5+x)^2}-\frac {5 \left (5-e^2\right ) \left (4-e^8\right )}{(5+x)^2}-\frac {12532 \left (5-e^2\right )}{625 (5+x)}+\frac {2 \left (5-e^2\right ) \left (4-e^8\right )}{5+x}+\frac {128 \log (x)}{125}-\frac {64 \left (1907-625 e^2\right ) \log (x)}{390625}+\frac {192 \left (219-125 e^2\right ) \log (x)}{390625}-\frac {1378 e^2 \left (1+5 e^6\right ) \log (x)}{3125}-\frac {128}{625} \left (4-e^8\right ) \log (x)+\frac {64 \left (1907-625 e^2\right ) \log (5+x)}{390625}-\frac {192 \left (219-125 e^2\right ) \log (5+x)}{390625}+\frac {2}{125} \left (1811+125 e^2\right ) \log (5+x)-\frac {4872 e^2 \left (1+5 e^6\right ) \log (5+x)}{3125}-\frac {4872}{625} \left (4-e^8\right ) \log (5+x)+2 \int \log (x) \, dx+2 \int \frac {\log (x)}{x} \, dx+128 \int \frac {\log (x)}{x^5} \, dx-\left (2 \left (5-e^2\right )\right ) \int \frac {\log (x)}{(5+x)^2} \, dx\\ &=\frac {256}{x^8}+\frac {32 e^2 \left (1+5 e^6\right )}{5 x^4}+\frac {22048}{9375 x^3}+\frac {32 \left (1811+125 e^2\right )}{9375 x^3}-\frac {128 e^2 \left (1+5 e^6\right )}{75 x^3}-\frac {128 \left (4-e^8\right )}{15 x^3}-\frac {64}{5 x^2}-\frac {48 \left (187+125 e^2\right )}{15625 x^2}+\frac {16 \left (1811+125 e^2\right )}{15625 x^2}+\frac {64 e^2 \left (1+5 e^6\right )}{125 x^2}+\frac {64 \left (4-e^8\right )}{25 x^2}+\frac {128}{25 x}-\frac {192 \left (219-125 e^2\right )}{78125 x}-\frac {96 \left (187+125 e^2\right )}{78125 x}-\frac {128 e^2 \left (1+5 e^6\right )}{625 x}-\frac {128 \left (4-e^8\right )}{125 x}-10 x+2 \left (4-e^8\right ) x+x^2+\frac {25 \left (5-e^2\right )}{(5+x)^2}-\frac {e^2 \left (5-e^2\right ) \left (1+5 e^6\right )}{(5+x)^2}-\frac {5 \left (5-e^2\right ) \left (4-e^8\right )}{(5+x)^2}-\frac {12532 \left (5-e^2\right )}{625 (5+x)}+\frac {2 \left (5-e^2\right ) \left (4-e^8\right )}{5+x}+\frac {128 \log (x)}{125}-\frac {64 \left (1907-625 e^2\right ) \log (x)}{390625}+\frac {192 \left (219-125 e^2\right ) \log (x)}{390625}-\frac {1378 e^2 \left (1+5 e^6\right ) \log (x)}{3125}-\frac {128}{625} \left (4-e^8\right ) \log (x)-\frac {32 \log (x)}{x^4}+2 x \log (x)-\frac {2 \left (5-e^2\right ) x \log (x)}{5 (5+x)}+\log ^2(x)+\frac {64 \left (1907-625 e^2\right ) \log (5+x)}{390625}-\frac {192 \left (219-125 e^2\right ) \log (5+x)}{390625}+\frac {2}{125} \left (1811+125 e^2\right ) \log (5+x)-\frac {4872 e^2 \left (1+5 e^6\right ) \log (5+x)}{3125}-\frac {4872}{625} \left (4-e^8\right ) \log (5+x)+\frac {1}{5} \left (2 \left (5-e^2\right )\right ) \int \frac {1}{5+x} \, dx\\ &=\frac {256}{x^8}+\frac {32 e^2 \left (1+5 e^6\right )}{5 x^4}+\frac {22048}{9375 x^3}+\frac {32 \left (1811+125 e^2\right )}{9375 x^3}-\frac {128 e^2 \left (1+5 e^6\right )}{75 x^3}-\frac {128 \left (4-e^8\right )}{15 x^3}-\frac {64}{5 x^2}-\frac {48 \left (187+125 e^2\right )}{15625 x^2}+\frac {16 \left (1811+125 e^2\right )}{15625 x^2}+\frac {64 e^2 \left (1+5 e^6\right )}{125 x^2}+\frac {64 \left (4-e^8\right )}{25 x^2}+\frac {128}{25 x}-\frac {192 \left (219-125 e^2\right )}{78125 x}-\frac {96 \left (187+125 e^2\right )}{78125 x}-\frac {128 e^2 \left (1+5 e^6\right )}{625 x}-\frac {128 \left (4-e^8\right )}{125 x}-10 x+2 \left (4-e^8\right ) x+x^2+\frac {25 \left (5-e^2\right )}{(5+x)^2}-\frac {e^2 \left (5-e^2\right ) \left (1+5 e^6\right )}{(5+x)^2}-\frac {5 \left (5-e^2\right ) \left (4-e^8\right )}{(5+x)^2}-\frac {12532 \left (5-e^2\right )}{625 (5+x)}+\frac {2 \left (5-e^2\right ) \left (4-e^8\right )}{5+x}+\frac {128 \log (x)}{125}-\frac {64 \left (1907-625 e^2\right ) \log (x)}{390625}+\frac {192 \left (219-125 e^2\right ) \log (x)}{390625}-\frac {1378 e^2 \left (1+5 e^6\right ) \log (x)}{3125}-\frac {128}{625} \left (4-e^8\right ) \log (x)-\frac {32 \log (x)}{x^4}+2 x \log (x)-\frac {2 \left (5-e^2\right ) x \log (x)}{5 (5+x)}+\log ^2(x)+\frac {64 \left (1907-625 e^2\right ) \log (5+x)}{390625}-\frac {192 \left (219-125 e^2\right ) \log (5+x)}{390625}+\frac {2}{5} \left (5-e^2\right ) \log (5+x)+\frac {2}{125} \left (1811+125 e^2\right ) \log (5+x)-\frac {4872 e^2 \left (1+5 e^6\right ) \log (5+x)}{3125}-\frac {4872}{625} \left (4-e^8\right ) \log (5+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.15, size = 169, normalized size = 5.83 \begin {gather*} 2 \left (\frac {128}{x^8}+\frac {16 e^2 \left (1+5 e^6\right )}{5 x^4}-\frac {16 \left (20+e^2\right )}{25 x^3}+\frac {16 \left (-5+e^2\right )}{125 x^2}-\frac {16 \left (-5+e^2\right )}{625 x}-\left (1+e^8\right ) x+\frac {x^2}{2}+\frac {\left (-5+e^2\right )^2}{2 (5+x)^2}+\frac {-18830+3766 e^2-3125 e^8+625 e^{10}}{625 (5+x)}-\left (1+e^8\right ) \log (x)+\frac {\left (-80-16 x-\left (-5+e^2\right ) x^4+5 x^5+x^6\right ) \log (x)}{x^4 (5+x)}+\frac {\log ^2(x)}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 230, normalized size = 7.93 \begin {gather*} \frac {x^{12} + 8 \, x^{11} + 5 \, x^{10} - 110 \, x^{9} + x^{8} e^{4} - 275 \, x^{8} - 32 \, x^{7} - 288 \, x^{6} - 640 \, x^{5} + {\left (x^{10} + 10 \, x^{9} + 25 \, x^{8}\right )} \log \relax (x)^{2} + 256 \, x^{2} + 2 \, {\left (x^{9} + 5 \, x^{8}\right )} e^{10} - 2 \, {\left (x^{11} + 10 \, x^{10} + 30 \, x^{9} + 25 \, x^{8} - 16 \, x^{6} - 160 \, x^{5} - 400 \, x^{4}\right )} e^{8} + 2 \, {\left (6 \, x^{9} + 25 \, x^{8} + 16 \, x^{5} + 80 \, x^{4}\right )} e^{2} + 2 \, {\left (x^{11} + 9 \, x^{10} + 20 \, x^{9} - 16 \, x^{6} - 160 \, x^{5} - 400 \, x^{4} - {\left (x^{10} + 10 \, x^{9} + 25 \, x^{8}\right )} e^{8} - {\left (x^{9} + 5 \, x^{8}\right )} e^{2}\right )} \log \relax (x) + 2560 \, x + 6400}{x^{10} + 10 \, x^{9} + 25 \, x^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x^{13} + 15 \, x^{12} + 74 \, x^{11} + 145 \, x^{10} - x^{9} e^{4} + 100 \, x^{9} + 48 \, x^{8} + 640 \, x^{7} + 2800 \, x^{6} + 3600 \, x^{5} - 2000 \, x^{4} - 1024 \, x^{3} - 15360 \, x^{2} - {\left (x^{12} + 16 \, x^{11} + 85 \, x^{10} + 175 \, x^{9} + 125 \, x^{8} + 64 \, x^{7} + 960 \, x^{6} + 4800 \, x^{5} + 8000 \, x^{4} + {\left (x^{10} + 5 \, x^{9}\right )} e^{2}\right )} e^{8} - {\left (7 \, x^{10} + 30 \, x^{9} + 25 \, x^{8} + 80 \, x^{6} + 720 \, x^{5} + 1600 \, x^{4}\right )} e^{2} + {\left (x^{12} + 16 \, x^{11} + 85 \, x^{10} + 175 \, x^{9} + 125 \, x^{8} + 64 \, x^{7} + 960 \, x^{6} + 4800 \, x^{5} + 8000 \, x^{4} + {\left (x^{10} + 5 \, x^{9}\right )} e^{2}\right )} \log \relax (x) - 76800 \, x - 128000\right )}}{x^{12} + 15 \, x^{11} + 75 \, x^{10} + 125 \, x^{9}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.15, size = 176, normalized size = 6.07
method | result | size |
default | \(-2 x -\frac {32 \,{\mathrm e}^{2}}{25 x^{3}}-2 x \,{\mathrm e}^{8}-\frac {32 \,{\mathrm e}^{2}}{625 x}+\ln \relax (x )^{2}+x^{2}-\frac {2 \,{\mathrm e}^{2} \ln \relax (x )}{5}+\frac {32 \,{\mathrm e}^{2}}{125 x^{2}}+2 x \ln \relax (x )-\frac {32}{25 x^{2}}+\frac {32}{125 x}+\frac {2 \,{\mathrm e}^{2} \ln \relax (x ) x}{5 \left (5+x \right )}-\frac {7532}{125 \left (5+x \right )}+\frac {256}{x^{8}}-\frac {128}{5 x^{3}}-\frac {32 \ln \relax (x )}{x^{4}}-2 \ln \relax (x ) {\mathrm e}^{8}+\frac {32 \,{\mathrm e}^{2}}{5 x^{4}}+\frac {32 \,{\mathrm e}^{8}}{x^{4}}+\frac {{\mathrm e}^{4}}{\left (5+x \right )^{2}}-\frac {10 \,{\mathrm e}^{2}}{\left (5+x \right )^{2}}+\frac {7532 \,{\mathrm e}^{2}}{625 \left (5+x \right )}-\frac {10 \,{\mathrm e}^{8}}{5+x}+\frac {2 \,{\mathrm e}^{10}}{5+x}+\frac {25}{\left (5+x \right )^{2}}-\frac {2 \ln \relax (x ) x}{5+x}\) | \(176\) |
risch | \(\ln \relax (x )^{2}-\frac {2 \left (-x^{6}+x^{4} {\mathrm e}^{2}-5 x^{5}-5 x^{4}+16 x +80\right ) \ln \relax (x )}{\left (5+x \right ) x^{4}}+\frac {6400+2560 x -2 x^{10} \ln \relax (x )+32 \,{\mathrm e}^{2} x^{5}-20 x^{9} \ln \relax (x )+8 x^{11}+x^{12}-32 x^{7}-275 x^{8}+5 x^{10}-110 x^{9}-288 x^{6}-640 x^{5}+256 x^{2}+50 x^{8} {\mathrm e}^{2}+x^{8} {\mathrm e}^{4}-50 x^{8} \ln \relax (x )+160 x^{4} {\mathrm e}^{2}+12 \,{\mathrm e}^{2} x^{9}+320 x^{5} {\mathrm e}^{8}-2 \,{\mathrm e}^{8} \ln \relax (x ) x^{10}-20 \,{\mathrm e}^{8} \ln \relax (x ) x^{9}-50 \,{\mathrm e}^{8} \ln \relax (x ) x^{8}-60 \,{\mathrm e}^{8} x^{9}-50 \,{\mathrm e}^{8} x^{8}+32 \,{\mathrm e}^{8} x^{6}+10 \,{\mathrm e}^{10} x^{8}+800 x^{4} {\mathrm e}^{8}-2 \,{\mathrm e}^{8} x^{11}+2 \,{\mathrm e}^{10} x^{9}-20 \,{\mathrm e}^{8} x^{10}}{\left (5+x \right )^{2} x^{8}}\) | \(246\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 1137, normalized size = 39.21 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.52, size = 178, normalized size = 6.14 \begin {gather*} {\ln \relax (x)}^2-\ln \relax (x)\,\left (2\,{\mathrm {e}}^8-\frac {5}{3}\right )+\frac {\left (36\,{\mathrm {e}}^2-30\,{\mathrm {e}}^8+6\,{\mathrm {e}}^{10}-180\right )\,x^9+\left (150\,{\mathrm {e}}^2+3\,{\mathrm {e}}^4-150\,{\mathrm {e}}^8+30\,{\mathrm {e}}^{10}-825\right )\,x^8-96\,x^7+\left (96\,{\mathrm {e}}^8-864\right )\,x^6+\left (96\,{\mathrm {e}}^2+960\,{\mathrm {e}}^8-1920\right )\,x^5+\left (480\,{\mathrm {e}}^2+2400\,{\mathrm {e}}^8\right )\,x^4+768\,x^2+7680\,x+19200}{3\,x^{10}+30\,x^9+75\,x^8}+x^2-x\,\left (2\,{\mathrm {e}}^8+2\right )-\frac {\ln \relax (x)\,\left (-2\,x^6-\frac {19\,x^5}{3}+\left (2\,{\mathrm {e}}^2+\frac {25}{3}\right )\,x^4+32\,x+160\right )}{x^5+5\,x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 45.62, size = 180, normalized size = 6.21 \begin {gather*} x^{2} + x \left (- 2 e^{8} - 2\right ) + \log {\relax (x )}^{2} - 2 \left (1 + e^{8}\right ) \log {\relax (x )} + \frac {x^{9} \left (- 10 e^{8} - 60 + 12 e^{2} + 2 e^{10}\right ) + x^{8} \left (- 50 e^{8} - 275 + e^{4} + 50 e^{2} + 10 e^{10}\right ) - 32 x^{7} + x^{6} \left (-288 + 32 e^{8}\right ) + x^{5} \left (-640 + 32 e^{2} + 320 e^{8}\right ) + x^{4} \left (160 e^{2} + 800 e^{8}\right ) + 256 x^{2} + 2560 x + 6400}{x^{10} + 10 x^{9} + 25 x^{8}} + \frac {\left (2 x^{6} + 10 x^{5} - 2 x^{4} e^{2} + 10 x^{4} - 32 x - 160\right ) \log {\relax (x )}}{x^{5} + 5 x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________