Optimal. Leaf size=29 \[ 5+x+\frac {\log \left (\frac {4 (-1+x)}{\left (\frac {4}{5}+2 x+x^2\right )^2 \log (2)}\right )}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.15, antiderivative size = 382, normalized size of antiderivative = 13.17, number of steps used = 34, number of rules used = 8, integrand size = 97, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {6741, 6742, 2058, 632, 31, 2074, 2525, 6728} \begin {gather*} \frac {\log \left (-\frac {100 (1-x)}{\left (5 x^2+10 x+4\right )^2 \log (2)}\right )}{x}+x+\frac {3}{19} \left (15+11 \sqrt {5}\right ) \log \left (-\sqrt {5} x-\sqrt {5}+1\right )-\frac {3}{19} \left (1+2 \sqrt {5}\right ) \log \left (-\sqrt {5} x-\sqrt {5}+1\right )-\frac {1}{2} \left (5+\sqrt {5}\right ) \log \left (-\sqrt {5} x-\sqrt {5}+1\right )+\frac {1}{19} \left (7-5 \sqrt {5}\right ) \log \left (-\sqrt {5} x-\sqrt {5}+1\right )-\frac {4}{95} \left (15-8 \sqrt {5}\right ) \log \left (-\sqrt {5} x-\sqrt {5}+1\right )+\frac {21}{190} \left (5-9 \sqrt {5}\right ) \log \left (-\sqrt {5} x-\sqrt {5}+1\right )+\frac {21}{190} \left (5+9 \sqrt {5}\right ) \log \left (\sqrt {5} x+\sqrt {5}+1\right )-\frac {4}{95} \left (15+8 \sqrt {5}\right ) \log \left (\sqrt {5} x+\sqrt {5}+1\right )+\frac {1}{19} \left (7+5 \sqrt {5}\right ) \log \left (\sqrt {5} x+\sqrt {5}+1\right )-\frac {1}{2} \left (5-\sqrt {5}\right ) \log \left (\sqrt {5} x+\sqrt {5}+1\right )-\frac {3}{19} \left (1-2 \sqrt {5}\right ) \log \left (\sqrt {5} x+\sqrt {5}+1\right )+\frac {3}{19} \left (15-11 \sqrt {5}\right ) \log \left (\sqrt {5} x+\sqrt {5}+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 632
Rule 2058
Rule 2074
Rule 2525
Rule 6728
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-24 x-6 x^2+21 x^3-5 x^4-5 x^5-\left (4+6 x-5 x^2-5 x^3\right ) \log \left (\frac {-100+100 x}{\left (16+80 x+140 x^2+100 x^3+25 x^4\right ) \log (2)}\right )}{x^2 \left (4+6 x-5 x^2-5 x^3\right )} \, dx\\ &=\int \left (\frac {6}{-4-6 x+5 x^2+5 x^3}+\frac {24}{x \left (-4-6 x+5 x^2+5 x^3\right )}-\frac {21 x}{-4-6 x+5 x^2+5 x^3}+\frac {5 x^2}{-4-6 x+5 x^2+5 x^3}+\frac {5 x^3}{-4-6 x+5 x^2+5 x^3}-\frac {\log \left (\frac {100 (-1+x)}{\left (4+10 x+5 x^2\right )^2 \log (2)}\right )}{x^2}\right ) \, dx\\ &=5 \int \frac {x^2}{-4-6 x+5 x^2+5 x^3} \, dx+5 \int \frac {x^3}{-4-6 x+5 x^2+5 x^3} \, dx+6 \int \frac {1}{-4-6 x+5 x^2+5 x^3} \, dx-21 \int \frac {x}{-4-6 x+5 x^2+5 x^3} \, dx+24 \int \frac {1}{x \left (-4-6 x+5 x^2+5 x^3\right )} \, dx-\int \frac {\log \left (\frac {100 (-1+x)}{\left (4+10 x+5 x^2\right )^2 \log (2)}\right )}{x^2} \, dx\\ &=\frac {\log \left (-\frac {100 (1-x)}{\left (4+10 x+5 x^2\right )^2 \log (2)}\right )}{x}+5 \int \left (\frac {1}{19 (-1+x)}+\frac {2 (2+7 x)}{19 \left (4+10 x+5 x^2\right )}\right ) \, dx+5 \int \left (\frac {1}{5}+\frac {1}{19 (-1+x)}-\frac {8 (7+15 x)}{95 \left (4+10 x+5 x^2\right )}\right ) \, dx+6 \int \left (\frac {1}{19 (-1+x)}-\frac {5 (3+x)}{19 \left (4+10 x+5 x^2\right )}\right ) \, dx-21 \int \left (\frac {1}{19 (-1+x)}+\frac {4-5 x}{19 \left (4+10 x+5 x^2\right )}\right ) \, dx+24 \int \left (\frac {1}{19 (-1+x)}-\frac {1}{4 x}+\frac {5 (26+15 x)}{76 \left (4+10 x+5 x^2\right )}\right ) \, dx-\int \frac {-24-10 x+15 x^2}{(1-x) x \left (4+10 x+5 x^2\right )} \, dx\\ &=x+\log (1-x)-6 \log (x)+\frac {\log \left (-\frac {100 (1-x)}{\left (4+10 x+5 x^2\right )^2 \log (2)}\right )}{x}-\frac {8}{19} \int \frac {7+15 x}{4+10 x+5 x^2} \, dx+\frac {10}{19} \int \frac {2+7 x}{4+10 x+5 x^2} \, dx-\frac {21}{19} \int \frac {4-5 x}{4+10 x+5 x^2} \, dx-\frac {30}{19} \int \frac {3+x}{4+10 x+5 x^2} \, dx+\frac {30}{19} \int \frac {26+15 x}{4+10 x+5 x^2} \, dx-\int \left (\frac {1}{-1+x}-\frac {6}{x}+\frac {5 (6+5 x)}{4+10 x+5 x^2}\right ) \, dx\\ &=x+\frac {\log \left (-\frac {100 (1-x)}{\left (4+10 x+5 x^2\right )^2 \log (2)}\right )}{x}-5 \int \frac {6+5 x}{4+10 x+5 x^2} \, dx+\frac {1}{19} \left (15 \left (15-11 \sqrt {5}\right )\right ) \int \frac {1}{5+\sqrt {5}+5 x} \, dx+\frac {1}{38} \left (21 \left (5-9 \sqrt {5}\right )\right ) \int \frac {1}{5-\sqrt {5}+5 x} \, dx-\frac {1}{19} \left (4 \left (15-8 \sqrt {5}\right )\right ) \int \frac {1}{5-\sqrt {5}+5 x} \, dx+\frac {1}{19} \left (5 \left (7-5 \sqrt {5}\right )\right ) \int \frac {1}{5-\sqrt {5}+5 x} \, dx-\frac {1}{19} \left (15 \left (1-2 \sqrt {5}\right )\right ) \int \frac {1}{5+\sqrt {5}+5 x} \, dx-\frac {1}{19} \left (15 \left (1+2 \sqrt {5}\right )\right ) \int \frac {1}{5-\sqrt {5}+5 x} \, dx+\frac {1}{19} \left (5 \left (7+5 \sqrt {5}\right )\right ) \int \frac {1}{5+\sqrt {5}+5 x} \, dx-\frac {1}{19} \left (4 \left (15+8 \sqrt {5}\right )\right ) \int \frac {1}{5+\sqrt {5}+5 x} \, dx+\frac {1}{38} \left (21 \left (5+9 \sqrt {5}\right )\right ) \int \frac {1}{5+\sqrt {5}+5 x} \, dx+\frac {1}{19} \left (15 \left (15+11 \sqrt {5}\right )\right ) \int \frac {1}{5-\sqrt {5}+5 x} \, dx\\ &=x+\frac {21}{190} \left (5-9 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )-\frac {4}{95} \left (15-8 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )+\frac {1}{19} \left (7-5 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )-\frac {3}{19} \left (1+2 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )+\frac {3}{19} \left (15+11 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )+\frac {3}{19} \left (15-11 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )-\frac {3}{19} \left (1-2 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )+\frac {1}{19} \left (7+5 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )-\frac {4}{95} \left (15+8 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )+\frac {21}{190} \left (5+9 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )+\frac {\log \left (-\frac {100 (1-x)}{\left (4+10 x+5 x^2\right )^2 \log (2)}\right )}{x}-\frac {1}{2} \left (5 \left (5-\sqrt {5}\right )\right ) \int \frac {1}{5+\sqrt {5}+5 x} \, dx-\frac {1}{2} \left (5 \left (5+\sqrt {5}\right )\right ) \int \frac {1}{5-\sqrt {5}+5 x} \, dx\\ &=x+\frac {21}{190} \left (5-9 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )-\frac {4}{95} \left (15-8 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )+\frac {1}{19} \left (7-5 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )-\frac {1}{2} \left (5+\sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )-\frac {3}{19} \left (1+2 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )+\frac {3}{19} \left (15+11 \sqrt {5}\right ) \log \left (1-\sqrt {5}-\sqrt {5} x\right )+\frac {3}{19} \left (15-11 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )-\frac {3}{19} \left (1-2 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )-\frac {1}{2} \left (5-\sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )+\frac {1}{19} \left (7+5 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )-\frac {4}{95} \left (15+8 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )+\frac {21}{190} \left (5+9 \sqrt {5}\right ) \log \left (1+\sqrt {5}+\sqrt {5} x\right )+\frac {\log \left (-\frac {100 (1-x)}{\left (4+10 x+5 x^2\right )^2 \log (2)}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 28, normalized size = 0.97 \begin {gather*} x+\frac {\log \left (\frac {100 (-1+x)}{\left (4+10 x+5 x^2\right )^2 \log (2)}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 40, normalized size = 1.38 \begin {gather*} \frac {x^{2} + \log \left (\frac {100 \, {\left (x - 1\right )}}{{\left (25 \, x^{4} + 100 \, x^{3} + 140 \, x^{2} + 80 \, x + 16\right )} \log \relax (2)}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 56, normalized size = 1.93 \begin {gather*} x + \frac {2 \, \log \relax (2)}{x} - \frac {\log \left (25 \, x^{4} \log \relax (2) + 100 \, x^{3} \log \relax (2) + 140 \, x^{2} \log \relax (2) + 80 \, x \log \relax (2) + 16 \, \log \relax (2)\right )}{x} + \frac {\log \left (25 \, x - 25\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 40, normalized size = 1.38
method | result | size |
risch | \(\frac {\ln \left (\frac {100 x -100}{\left (25 x^{4}+100 x^{3}+140 x^{2}+80 x +16\right ) \ln \relax (2)}\right )}{x}+x\) | \(40\) |
norman | \(\frac {x^{2}+\ln \left (\frac {100 x -100}{\left (25 x^{4}+100 x^{3}+140 x^{2}+80 x +16\right ) \ln \relax (2)}\right )}{x}\) | \(42\) |
default | \(-\frac {\ln \left (\ln \relax (2)\right )}{x}+x +\frac {2 \ln \left (10\right )}{x}+\frac {\ln \left (\frac {x -1}{25 x^{4}+100 x^{3}+140 x^{2}+80 x +16}\right )}{x}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 64, normalized size = 2.21 \begin {gather*} x - \frac {{\left (5 \, x + 4\right )} \log \left (5 \, x^{2} + 10 \, x + 4\right ) + 2 \, {\left (x - 1\right )} \log \left (x - 1\right ) - 4 \, \log \relax (5) - 4 \, \log \relax (2) + 2 \, \log \left (\log \relax (2)\right )}{2 \, x} + \frac {5}{2} \, \log \left (5 \, x^{2} + 10 \, x + 4\right ) + \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.01, size = 38, normalized size = 1.31 \begin {gather*} x+\frac {\ln \left (\frac {100\,\left (x-1\right )}{\ln \relax (2)\,\left (25\,x^4+100\,x^3+140\,x^2+80\,x+16\right )}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 32, normalized size = 1.10 \begin {gather*} x + \frac {\log {\left (\frac {100 x - 100}{\left (25 x^{4} + 100 x^{3} + 140 x^{2} + 80 x + 16\right ) \log {\relax (2 )}} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________