Optimal. Leaf size=26 \[ \frac {1-(5-x) x^2}{-x+2 x^2+\log (6)} \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 64, normalized size of antiderivative = 2.46, number of steps used = 5, number of rules used = 5, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1680, 12, 1814, 21, 8} \begin {gather*} \frac {x}{2}-\frac {(1-8 \log (6)) (7+34 \log (6))-4 \left (x-\frac {1}{4}\right ) \left (9-16 \log ^2(6)-70 \log (6)\right )}{16 (1-8 \log (6)) \left (-2 x^2+x-\log (6)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 21
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {256 x^4+37 (1-8 \log (6))+32 x^2 (17+12 \log (6))-32 x (7+34 \log (6))}{2 \left (1-16 x^2-8 \log (6)\right )^2} \, dx,x,-\frac {1}{4}+x\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {256 x^4+37 (1-8 \log (6))+32 x^2 (17+12 \log (6))-32 x (7+34 \log (6))}{\left (1-16 x^2-8 \log (6)\right )^2} \, dx,x,-\frac {1}{4}+x\right )\\ &=-\frac {(1-8 \log (6)) (7+34 \log (6))+(1-4 x) \left (9-70 \log (6)-16 \log ^2(6)\right )}{16 (1-8 \log (6)) \left (x-2 x^2-\log (6)\right )}-\frac {\operatorname {Subst}\left (\int \frac {32 x^2 (1-8 \log (6))-2 (1-8 \log (6))^2}{1-16 x^2-8 \log (6)} \, dx,x,-\frac {1}{4}+x\right )}{4 (1-8 \log (6))}\\ &=-\frac {(1-8 \log (6)) (7+34 \log (6))+(1-4 x) \left (9-70 \log (6)-16 \log ^2(6)\right )}{16 (1-8 \log (6)) \left (x-2 x^2-\log (6)\right )}+\frac {1}{2} \operatorname {Subst}\left (\int 1 \, dx,x,-\frac {1}{4}+x\right )\\ &=\frac {x}{2}-\frac {(1-8 \log (6)) (7+34 \log (6))+(1-4 x) \left (9-70 \log (6)-16 \log ^2(6)\right )}{16 (1-8 \log (6)) \left (x-2 x^2-\log (6)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 67, normalized size = 2.58 \begin {gather*} \frac {1}{4} \left (2 x+\frac {-4+78 \log ^2(6)+\log (6) (23-2 \log (216))+x \left (9+8 \log ^2(6)+\log (46656)-4 \log (6) (19+\log (46656))\right )}{\left (-x+2 x^2+\log (6)\right ) (-1+8 \log (6))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 34, normalized size = 1.31 \begin {gather*} \frac {4 \, x^{3} - 2 \, x^{2} - 9 \, x + 9 \, \log \relax (6) + 4}{4 \, {\left (2 \, x^{2} - x + \log \relax (6)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 33, normalized size = 1.27 \begin {gather*} \frac {1}{2} \, x - \frac {2 \, x \log \relax (6) + 9 \, x - 9 \, \log \relax (6) - 4}{4 \, {\left (2 \, x^{2} - x + \log \relax (6)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.04
method | result | size |
norman | \(\frac {x^{3}+1-\frac {5 x}{2}+\frac {5 \ln \relax (6)}{2}}{\ln \relax (6)+2 x^{2}-x}\) | \(27\) |
gosper | \(\frac {2 x^{3}+5 \ln \relax (6)-5 x +2}{2 \ln \relax (6)+4 x^{2}-2 x}\) | \(30\) |
default | \(\frac {x}{2}-\frac {\left (\ln \relax (6)+\frac {9}{2}\right ) x -2-\frac {9 \ln \relax (6)}{2}}{2 \left (\ln \relax (6)+2 x^{2}-x \right )}\) | \(32\) |
risch | \(\frac {x}{2}+\frac {\frac {\left (-\frac {9}{2}-\ln \relax (2)-\ln \relax (3)\right ) x}{2}+\frac {9 \ln \relax (3)}{4}+\frac {9 \ln \relax (2)}{4}+1}{\ln \relax (2)+\ln \relax (3)+2 x^{2}-x}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 33, normalized size = 1.27 \begin {gather*} \frac {1}{2} \, x - \frac {x {\left (2 \, \log \relax (6) + 9\right )} - 9 \, \log \relax (6) - 4}{4 \, {\left (2 \, x^{2} - x + \log \relax (6)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 33, normalized size = 1.27 \begin {gather*} \frac {x}{2}+\frac {\frac {9\,\ln \relax (6)}{2}-x\,\left (\ln \relax (6)+\frac {9}{2}\right )+2}{4\,x^2-2\,x+2\,\ln \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.59, size = 32, normalized size = 1.23 \begin {gather*} \frac {x}{2} + \frac {x \left (-9 - 2 \log {\relax (6 )}\right ) + 4 + 9 \log {\relax (6 )}}{8 x^{2} - 4 x + 4 \log {\relax (6 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________