Optimal. Leaf size=34 \[ -x+\frac {x}{\frac {x}{5}+\frac {\log ^2(2)}{-4-x-\log \left (1+x^2\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 2.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x^2-8 x^3-17 x^4-8 x^5-x^6+\left (-100-10 x-140 x^2-10 x^3+10 x^4\right ) \log ^2(2)+\left (-25-25 x^2\right ) \log ^4(2)+\left (-8 x^2-2 x^3-8 x^4-2 x^5+\left (-25+10 x-25 x^2+10 x^3\right ) \log ^2(2)\right ) \log \left (1+x^2\right )+\left (-x^2-x^4\right ) \log ^2\left (1+x^2\right )}{16 x^2+8 x^3+17 x^4+8 x^5+x^6+\left (-40 x-10 x^2-40 x^3-10 x^4\right ) \log ^2(2)+\left (25+25 x^2\right ) \log ^4(2)+\left (8 x^2+2 x^3+8 x^4+2 x^5+\left (-10 x-10 x^3\right ) \log ^2(2)\right ) \log \left (1+x^2\right )+\left (x^2+x^4\right ) \log ^2\left (1+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 x^5-x^6-10 x \log ^2(2)-x^4 \left (17-10 \log ^2(2)\right )-25 \log ^2(2) \left (4+\log ^2(2)\right )-2 x^3 \left (4+5 \log ^2(2)\right )-x^2 \left (16+140 \log ^2(2)+25 \log ^4(2)\right )-\left (1+x^2\right ) \left (8 x^2+2 x^3+25 \log ^2(2)-10 x \log ^2(2)\right ) \log \left (1+x^2\right )-\left (x^2+x^4\right ) \log ^2\left (1+x^2\right )}{\left (1+x^2\right ) \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx\\ &=\int \left (-1+\frac {25 \log ^2(2) \left (-2 x^3-x^4-5 \log ^2(2)-x^2 \left (1+5 \log ^2(2)\right )\right )}{x \left (1+x^2\right ) \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2}-\frac {25 \log ^2(2)}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )}\right ) \, dx\\ &=-x+\left (25 \log ^2(2)\right ) \int \frac {-2 x^3-x^4-5 \log ^2(2)-x^2 \left (1+5 \log ^2(2)\right )}{x \left (1+x^2\right ) \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx-\left (25 \log ^2(2)\right ) \int \frac {1}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )} \, dx\\ &=-x-\left (25 \log ^2(2)\right ) \int \frac {1}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )} \, dx+\left (25 \log ^2(2)\right ) \int \left (-\frac {2}{\left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2}-\frac {x}{\left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2}+\frac {2}{\left (1+x^2\right ) \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2}-\frac {5 \log ^2(2)}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2}\right ) \, dx\\ &=-x-\left (25 \log ^2(2)\right ) \int \frac {x}{\left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx-\left (25 \log ^2(2)\right ) \int \frac {1}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )} \, dx-\left (50 \log ^2(2)\right ) \int \frac {1}{\left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx+\left (50 \log ^2(2)\right ) \int \frac {1}{\left (1+x^2\right ) \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx-\left (125 \log ^4(2)\right ) \int \frac {1}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx\\ &=-x-\left (25 \log ^2(2)\right ) \int \frac {x}{\left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx-\left (25 \log ^2(2)\right ) \int \frac {1}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )} \, dx-\left (50 \log ^2(2)\right ) \int \frac {1}{\left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx+\left (50 \log ^2(2)\right ) \int \left (\frac {i}{2 (i-x) \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2}+\frac {i}{2 (i+x) \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2}\right ) \, dx-\left (125 \log ^4(2)\right ) \int \frac {1}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx\\ &=-x+\left (25 i \log ^2(2)\right ) \int \frac {1}{(i-x) \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx+\left (25 i \log ^2(2)\right ) \int \frac {1}{(i+x) \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx-\left (25 \log ^2(2)\right ) \int \frac {x}{\left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx-\left (25 \log ^2(2)\right ) \int \frac {1}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )} \, dx-\left (50 \log ^2(2)\right ) \int \frac {1}{\left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx-\left (125 \log ^4(2)\right ) \int \frac {1}{x \left (4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 33, normalized size = 0.97 \begin {gather*} -x+\frac {25 \log ^2(2)}{4 x+x^2-5 \log ^2(2)+x \log \left (1+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 53, normalized size = 1.56 \begin {gather*} -\frac {x^{3} - 5 \, {\left (x + 5\right )} \log \relax (2)^{2} + x^{2} \log \left (x^{2} + 1\right ) + 4 \, x^{2}}{x^{2} - 5 \, \log \relax (2)^{2} + x \log \left (x^{2} + 1\right ) + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.60, size = 33, normalized size = 0.97 \begin {gather*} -x + \frac {25 \, \log \relax (2)^{2}}{x^{2} - 5 \, \log \relax (2)^{2} + x \log \left (x^{2} + 1\right ) + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 37, normalized size = 1.09
method | result | size |
risch | \(-x -\frac {25 \ln \relax (2)^{2}}{5 \ln \relax (2)^{2}-x^{2}-\ln \left (x^{2}+1\right ) x -4 x}\) | \(37\) |
norman | \(\frac {x^{3}+\left (-5 \ln \relax (2)^{2}-16\right ) x +\ln \left (x^{2}+1\right ) x^{2}-4 \ln \left (x^{2}+1\right ) x -5 \ln \relax (2)^{2}}{5 \ln \relax (2)^{2}-x^{2}-\ln \left (x^{2}+1\right ) x -4 x}\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.98, size = 57, normalized size = 1.68 \begin {gather*} -\frac {x^{3} - 5 \, x \log \relax (2)^{2} + x^{2} \log \left (x^{2} + 1\right ) + 4 \, x^{2} - 25 \, \log \relax (2)^{2}}{x^{2} - 5 \, \log \relax (2)^{2} + x \log \left (x^{2} + 1\right ) + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.85, size = 57, normalized size = 1.68 \begin {gather*} -\frac {4\,x^2-25\,{\ln \relax (2)}^2-5\,x\,{\ln \relax (2)}^2+x^3+x^2\,\ln \left (x^2+1\right )}{4\,x+x\,\ln \left (x^2+1\right )-5\,{\ln \relax (2)}^2+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 29, normalized size = 0.85 \begin {gather*} - x + \frac {25 \log {\relax (2 )}^{2}}{x^{2} + x \log {\left (x^{2} + 1 \right )} + 4 x - 5 \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________